
UNIVERSITÀ DEGLI STUDI DI MILANO

Facoltà di Scienze Matematiche, Fisiche e Naturali

Corso di Laurea Magistrale in Informatica

Multi-view learning for
modeling audio-visual patterns

Relatore: Prof. Nicolò Cesa-Bianchi

Correlatore: Dott. Francesco Orabona

Tesi di Laurea di

Marco FORNONI

Matr. N. 701748

Anno Accademico 2008-2009

Acknowledgements

This work has been carried out at Idiap Research Institute of Martigny

(Switzerland) and supported by the DIRAC undergraduate internship pro-

gram. During the months spent on experiments, or on theoretical issues, my

personal knowledges and skills have been deeply stressed and very positively

affected. I have learned many interesting things about on-line learning al-

gorithms and their application and I had also the opportunity to train my

abilities and knowledges in scientific research methods. The final thesis is

the result of a remarkable cooperation between many people to whom I am

very grateful and I wish to thank.

First of all I am very grateful to Prof. Nicolò Cesa-Bianchi for his support

and inspiration and for having given me the chance to make this important

research experience. It has been my first abroad research experience and I

have to say that when I first asked Prof. Cesa-Bianchi a thesis, I could never

imagine that I might have been involved in something like this. I also had

the opportunity to collaborate with Francesco Orabona and Barbara Ca-

puto, whom I would like to thank for their support, suggestions and direct

contributions to this work.

A special thank finally goes to my parents Bernardo Valente Fornoni

and Teresa Mangiatordi, my sister Valeria Fornoni, my girlfriend Raffaella

Stoppani, my uncle Germano Fornoni and my aunt Sonia Nissim, my friends

Antonio Ricciardi, Edoardo Tosca, Marco Ferramosca, Stefano Mingardi and

to all of those who have supported me and have given a special flavor to my

life. This work is dedicated to them.

1

Contents

1 Introduction 4

1.1 Related work . 5

1.2 Contribution of the Thesis . 6

1.3 Outline . 7

2 Linear-threshold classifiers 8

2.1 Perceptron and gradient descent classifiers 9

2.1.1 A more general linear-threshold model 11

2.1.2 Convex optimization 14

2.1.3 Bregman divergence optimization 18

2.2 Kernel Methods . 22

2.2.1 Dual formulation . 22

2.2.2 Reproducing Kernel Hilbert Space theory 26

3 Matrix multi-view Perceptron 31

3.1 The model . 32

3.1.1 Prediction . 35

3.1.2 Kernelization . 39

3.1.3 Low risk hypothesis extraction 40

3.2 Motivation for further work 44

4 Orthogonal matrix multi-view Perceptron 46

4.1 The model . 46

4.1.1 Prediction . 48

4.2 Experiments . 51

4.2.1 Adult dataset . 51

2

4.2.2 News20 dataset . 53

4.2.3 Eth-80 dataset . 54

4.3 Discussion of the results . 61

5 Conclusions and future works 62

A Appendix 65

A.1 Fourier series in Hilbert spaces 65

A.2 Lemma . 66

References 72

3

Chapter 1

Introduction

Learning from multiple sensory channels is present in almost any biological

system and, indeed, multimodality is one of the main reasons why biological

systems are able to cope with the complexity of the world. This thesis deals

with the problem of learning from multiple sources of information, from an

on-line supervised machine learning perspective. From this point of view

there are many different ways to approach the problem, for example there

are different possible levels of the classification process at which views could

be integrated:

• low level, views are combined together at the feature level

Sensory
Input

View 1
features

View 2
features

Prediction
LabelClassifierKernel

• mid level, views are combined together while building a classification

decision function

Sensory
Input

View 1
features

View 2
features

Kernel 1

Kernel 2

Prediction
LabelClassifier

4

• high level, views are used separately to produce confidence estimates,

which are then combined together

Sensory
Input

View 1
features

View 2
features

Kernel 1

Kernel 2

Classifier
1

Classifier
2

Prediction
Label

1.1 Related work

Anemuller et al. (2008) have faced this problem from a biologically mo-

tivated point of view and have shown that high-level integration produce

better results with respect to low-level feature concatenation and a simple

mid-level kernel combination strategy. However in (Jie et al., 2008) the

same authors show that the low-level feature concatenation is more robust

to noise. Moreover, as an interesting example of high-level integration, Luo

Jie et. al in (Jie et al., 2009) create a 2 level architecture, where the output

of K-classifiers (one for each view) are optimally combined by a top classi-

fier.

There is also a plenty of literature in the field of mid-level integration: Blum

and Mitchell (1998) use unlabeled data to boost the performances of a clas-

sifier, by co-training different views. Sindhwani and Rosemberg (2008) use

a co-regularization technique to construct a Reproducing Kernel Hilbert

Space (RKHS) and prove bounds for the 2-views problem. Wang and Chen

(2009) use a co-regularization technique to create a RKHS for learning M

views, from a single-view dataset. Finally, Cavallanti et al. (2008) propose

an on-line matrix integration strategy where instances are matrix composed

of many view vectors. This algorithm, called matrix multi-view Perceptron

is a special case of a more general class of potential-based gradient descent

learners and its analysis, application and improvement will be the goal of

this thesis.

5

1.2 Contribution of the Thesis

This thesis approaches the problem of multi-view learning from a matrix

classification point of view. Its center of mass is matrix multi-view Per-

ceptron algorithm (Cavallanti et al., 2008) and its aim is its theoretical

and empirical evaluation, improvement and comparison to other multi-view

learning frameworks.

The main contributions of this thesis are:

• Analysis of matrix Perceptron algorithm. We study matrix Perceptron

algorithm and provide a prediction formula that explicitly highlights

how the single-view instance vectors are combined together in the pre-

diction phase. We also provide a technique to apply a popular on-line

to batch conversion theorem also to matrix Perceptron in its dual

form (suitable for kernel substitution). Moreover we highlight some

problems of the matrix approach to multi-view learning, such as: the

assumption that all the single-view vectors lie in spaces of the same

dimensionality is too restrictive; the inner products between different

views raise the problem of how to choose a similarity measure be-

tween different views; the computational complexity in time of matrix

Perceptron is quadratic with respect to the number of views.

• Proposal of a modified version of matrix Perceptron algorithm. We

propose a modified version of the original algorithm aimed to solve

the above mentioned problems. Specifically we employ a simple or-

thogonalization technique to turn the original matrix algorithm into a

basically vectorial algorithm and we show how its vectorial prediction

formula is related to the original matrix prediction formula.

• Empirical evaluation of different multi-view algorithms. We show that

on two artificial multi-view datasets, our vectorial algorithm performs

as well as the original matrix algorithm, while in a true multi-view task

where the original algorithm is not applicable, our algorithm competes

with another state-of-the-art multi-view algorithm. However, none of

the algorithms tested succeeds in outperforming the other algorithms

in all the tasks.

6

1.3 Outline

The report is composed of five Chapters. After this introductory Chapter

the reader will learn some basic theory on Potential-Based gradient descent

learners, Bregman divergence and some relevant theory of Kernel Methods.

In Chapter 3 we present Cavallanti’s matrix multi-view Perceptron algorithm

with some analysis on its internal behavior, multiple kernel and its points

of strength and weakness. In Chapter 4 we propose a different algorithm

supposed to address some of the weakness of matrix multi-view Perceptron

and we provide some experimental performances evaluations.

7

Chapter 2

Linear-threshold classifiers

Learning can be seen “as the phenomenon of knowledge acquisition in the

absence of explicit programming“ (Valiant, 1984). A learning machine con-

sists of a learning protocol together with a decision procedure. Learning

protocol specifies the way information is obtained from outside, while deci-

sion procedure specifies how the learning is done, once information has been

obtained. Information from outside should be enough for the purpose of

learning a solution for the problem, but not too much as the explicit pro-

gram that solves the problem (if it exists). The learning protocol, together

with the decision procedure is also often referred as the model of the learning

problem.

In on-line approaches, learning is modeled as an iterative process between

a student and a teacher: student is provided an instance of a problem and has

to try to solve it; teacher then gives the student some feedback that can be

used by the student to improve its abilities. The feedback should not convey

the explicit solution of the problem, while still making learning possible. In

a fully supervised fashion we assume that the feedback given to the student

is the correct answer, after the student has given its guess. The student in

this way does not receive any explicit programming information, but can

capitalize on that information in order to improve its future predictions.

8

2.1 Perceptron and gradient descent classifiers

In the field of machine learning for pattern classification student’s purpose

is to learn to correctly classify instances it is faced. Student is often called

learner, or forecaster and student’s guess is called prediction, while teacher’s

feedback is called outcome.

Learning protocol At each time-step t = 1, 2, the forecaster is faced

an instance xt and has to give its prediction ŷt about the class of the instance.

Once it has given its prediction, the teacher unveils the outcome yt. The

outcome is the information about the correct class the object belonged to.

We will concentrate on binary classification tasks in which there are only

two classes.

W
eight Vector

Se
pa

ra
tin

g
Hyp

er
pl
an

e

Figure 2.1: An Hyperplane splits the blue class from the red class.

Now that we have defined the learning protocol we can address the prob-

lem of how to capitalize on teacher’s feedback in order to improve learning

machine answer. A lot of work has been done in this field and one of the

most famous and long-lived solution is Rosemblat’s Perceptron algorithm

9

Assume xt ∈ X ⊆ Rd, wt ∈ Rd.

Initialization w0 = 0.

At each time t=1,2,....... do the following:

1: Observe instance xt ∈ X ;

2: Predict label yt ∈ {−1, 1} with ŷt = sign(〈wt−1,xt〉);
3: Observe actual label yt ∈ {−1, 1};
4: if ŷt 6= yt then

5: wt = wt−1 + ytxt

6: else

7: wt = wt−1

8: end if

Figure 2.2: Perceptron algorithm

(Rosenblatt, 1958).

Perceptron simple learning procedure can be formalized in this way: in-

stances are vectors xt in an instance space X ⊆ Rd, predictions ŷt and

outcomes yt lie in {−1, 1}, while a weight vector wt is supposed to lie in Rd.

Perceptron Decision procedure At each time-step t = 1, 2, ... Percep-

tron predicts using the signum of the projection of the instances on the

weight vector (multiplied by ‖wt‖), formally: ŷt = sign (〈wt−1,xt〉). This is

equivalent to consider the d−1 dimensional hyperplane passing through ori-

gin and orthogonal to wt, as a separating hyperplane that splits the positive

class from the negative one (see Figure 2.1).

Perceptron algorithm updates its weights conservatively, that is it up-

dates if and only if the prediction was wrong: ŷt 6= yt, or equivalently

ŷtyt ≤ 0. Update rule is given by: wt = wt−1 + ytxt. If we assume w0 = 0,

Perceptron weight vector is a point in the instance space X , since at time T

it is a linear combination of the instances: wT =
∑T

t=1 I{ŷt 6=yt}ytxt, where I
is the indicator function.

It is worth noting that Perceptron algorithm can successfully learn only

linearly-separable relations. However, in Section 2.2 we will see how we can

overcome this problem by the mean of kernel functions.

10

1 2

3

Figure 2.3: Convergence of Perceptron learning updates.

In Figure 2.3 we see an example execution of the Perceptron algorithm.

We have two classes: red class (yt = 1) and blue class (yt = −1). Red

arrow point towards the Red class, so that points on the arrow side of the

hyperplane are classified as red and the remaining are classified as blue.

Circled points are missclassified so that at each step, the weight vector is

updated as wt = wt−1 + ytxt.

2.1.1 A more general linear-threshold model

Many on-line supervised classification algorithms can be analyzed as being

special cases of a general linear-threshold learning model that makes use

of the notions of distance function and loss function. This model can be

formalized as follow.

2.1.1 Model formalization. Every instance xt is supposed to belong to an

instance space X ⊆ Rd, every outcome yt to an outcome space Y and every

prediction ŷt is supposed to belong to a decision space D = Y = {−1, 1}.

11

The forecaster produce hypothesis functions fwt : Rd → D in an hypothesis

space H. These hypotheses are linear-threshold functions parametric in a

weight vector wt ∈ Rd and they have the following form:

fwt(·) = sign(〈wt, ·〉) (2.1.1)

The problem is also parametric with respect to a loss function `t : Rd → R+

and a premetric d : Rd × Rd → R+.

Loss functions were first introduced in Decision Theory as a way to for-

malize the loss suffered by taking a wrong decision and now play a very

important rule in machine learning. In our on-line classification task for

example, a forecaster will for sure suffer some loss if an instance is missclas-

sified. It is also possible that it will incur some loss even if the instance is

correctly classified, however in this case the forecaster will not update its

weights. This last policy is known as “conservative” and it is not a gen-

eral and shared approach: there is a version of the Perceptron algorithm,

called Ballseptron (Shalev-Shwartz and Singer, 2005) which updates weights

more aggressively, when the margin is below a certain threshold, while other

aggressive approaches have been explored also in (Crammer et al., 2006).

In any case throughout this work we will consider only conservative al-

gorithms, that update the weight vector only in case of misclassification.

2.1.2 Loss function. A function `t : Rd → R+ whose value `t(w) at time

t measure the disagreement between the true outcome yt and the prediction

ŷt = fw(xt), with respect to weight vector w ∈ Rd is called loss function.

We can also define the cumulative loss as the overall loss incurred over

a finite sequence of decisions.

2.1.3 Cumulative loss function. If an on-line learning algorithm is run

with weight a vector w on a sequence of examples of length T , the cumulative

loss function LT : Rd → R+ suffered by the forecaster is defined as:

LT (w)
def
=

T∑
t=1

`t(w) (2.1.2)

12

As previously anticipated our general on-line learning model will rely also

on the notion on distance function. This function is usually supposed to be

a metric (that is to satisfy some axioms from Euclidean geometry), however

for our purposes we will consider a more general definition of distance.

2.1.4 Premetric distance function. A function d : Rd × Rd → R such

that:

d(w1,w2) ≥ 0

d(w,w) = 0

where w1,w2 ∈ Rd, is called premetric.

This is a very relaxed metric definition that does not need to satisfy the

triangle inequality, the symmetry axiom and the identity of indiscernibles

axiom.

Learning Protocol With the above formalization, we define the learning

protocol as follow:

• The forecaster is provided an initial weight vector w0 ∈ Rd

• at each time-step t = 1, 2, 3, ... the forecaster is provided an instance

xt ∈ Rd and is required to give its prediction ŷt

• after having given its prediction ŷt, the forecaster has access to the

true outcome yt

• if ŷt 6= yt the forecaster incurs a loss `t(wt−1). The weight vector wt−1

is subsequently updated.

Decision procedure As in Perceptron algorithm prediction is given by

ŷt = fwt−1(xt) = sign (〈wt−1,xt〉), but in this model we give a more general

strategy for the weight vector update, this strategy can be stated as follow:

weight vector has to be updated in order to minimize the loss incurred if

(xt, yt) is received again on the next step, while minimizing the distance

d(wt,wt−1) from the new weight vector wt to the old weight vector wt−1.

This approach has been adopted for example in (Cesa-Bianchi and Lugosi,

13

2006, Chapter 11).

Minimizing the loss incurred if (xt, yt) is received again means that the

forecaster is supposed to capitalize on the information received, in order to

update its parameters vector wt−1, so that if (xt, yt) is presented again on the

next step, it will incur a decreased loss. On the other hand, classifier needs

also to preserve previous learning, represented by the old wt−1; therefore

it has also to minimize the change in the weight vector, as measured by

d(wt,wt−1). For what we have said we can formalize the above mentioned

on-line minimization problem with the following objective function:

wt = arg min
u∈Rd

(d(u,wt−1) + λ`t(u)) (2.1.3)

where λ governs the relative importance of the loss function, compared with

the distance function. This model has two main components:

1. the distance function d

2. the loss function `t

depending on their choice we will obtain different prediction algorithms.

2.1.2 Convex optimization

In this Subsection we will try to analyze some specific instances of the pre-

vious general model, for the classification task and we will show also how

Perceptron update rule rises up naturally in this framework. We start by

stating a basic result from convex analysis which will serve as a pedestal for

all the subsequent theory.

2.1.5 Optimality conditions for convex functions. If a function f :

Rd → R is convex and differentiable, a necessary and sufficient condition for

a point w to be a local minimum of f is that ∇f(w) = 0. Moreover if such

a minimum exists, it is a global minimum (or the function is stationary).

As a consequence, if both the loss function `t(ut−1) and the distance

function d are convex and differentiable with respect to the first argument

u ∈ Rd, we can look for a global minimum of the objective function 2.1.3,

by setting:

∇ (d(u,wt−1) + λ`t(u)) = 0 (2.1.4)

14

-1 -0.5 0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

L
o
s
s

Hinge Loss
Zero-One Loss

Figure 2.4: The hinge loss (shown in blue) is convex and upperbounds the

zero-one loss (in black)

As before we are faced the choice of the premetric and the loss function, but

we now restrict our attention to convex and differentiable functions that

allow us to use (2.1.4). We start by introducing two loss functions, specific

for the binary classification task.

Loss functions for binary classification Many kinds of loss functions

are used to address machine learning problems and as a matter of facts

the choice of the appropriate loss function for the specific task is one of

the most important factors for the success of a learning procedure. In a

binary classification task, the forecaster incurs some loss if the signum of its

prediction is different from the signum of the outcome. A natural choice for

the loss function could then be `t : Rd → R+:

`t(u)
def
=

1 if yt〈u,xt〉 ≤ 0

0 otherwise.
(2.1.5)

This loss is called Zero-one Loss, it is not convex and its derivative is always

zero, apart in the point 〈u,xt〉 = 0, where it is not differentiable. Therefore

it cannot be minimized by means of Theorem 2.1.5. For this reason, it is

usually replaced by another loss function, which is convex and differentiable

15

and upperbounds the above-mentioned Loss:

`t(u)
def
= (1− yt〈u,xt〉})+ = max{0, 1− yt〈u,xt〉} (2.1.6)

This is the so-called Hinge Loss. Technically, this function is not differen-

tiable in the point 〈u,xt〉 = 1/yt = yt, however since we are dealing with

a conservative update policy we need to update weights in an optimal way

only when ŷt 6= yt. Therefore this loss function has to be minimized only

when ŷt = sign (〈u,xt〉) 6= yt and we may set:

∇`t(u) = ∇ (1− yt〈u,xt〉)+ = −ytxt I{ŷt 6=yt} (2.1.7)

Now that we have introduced a convex and differentiable loss function

suitable for our minimization task, we can concentrate our attention to the

premetric d, to be minimized. We will of course look for convex and differ-

entiable premetric.

Norm optimization In Rd a natural choice for d would be d(u,x) =

‖u − x‖ =
√
〈u− x,u− x〉. This function is clearly a premetric and it is

convex, because of triangle inequality (‖u + x‖ ≤ ‖u‖ + ‖x‖). However,

instead of minimizing the norm it is often more convenient to minimize
1
2‖u − x‖2. If we define f(x) = ‖x‖ and g(x) = 1

2x
2, g : R+ → R and

λ ∈ (0, 1) we see that

1
2
‖λx1 + (1− λ)x2‖2 = g(f(λx1 + (1− λ)x2))

≤ g(λf(x1) + (1− λ)f(x2))

≤ λg(f(x1)) + (1− λ)g(f(x2))

= λ
1
2
‖x1‖2 + (1− λ)

1
2
‖x2‖2 (2.1.8)

where for the first inequality we have exploited the convexity of f and the

fact that g is a non-decreasing function, while the second inequality is due

to the convexity of g. Therefore also 1
2‖u‖

2 is a convex function. Moreover

it is also a differentiable function and its gradient is given by:

∇1
2
‖u‖2 =

2
2
‖u‖∇‖u‖ = ‖u‖ u

‖u‖
= u (2.1.9)

16

Finally it is also easy to verify that d(u,x) = 1
2‖u − x‖2 is a premetric

with the same minimum point as ‖u − x‖ (namely the point u = x). This

premetric is therefore suitable for our minimization task.

At this point, we have introduced a convex and differentiable loss func-

tion and a convex and differentiable premetric function, suitable for our

learning problem. Therefore, by Theorem 2.1.5 we can compute:

∇
(

1
2
‖u−wt−1‖2 + λ`t(u)

)
= ∇

(
1
2
‖u−wt−1‖2

)
+ λ∇`t(u)

= u−wt−1 + λ∇`t(u)

and set it equal to zero, to obtain:

u = wt−1 − λ∇`t(u) (2.1.10)

This is not a closed-form solution, but by substituting `t(u) with its first-

order Taylor approximation `t(wt−1) + (u−wt−1)′∇`t(wt−1), around wt−1

into the original minimization problem we have:

∇
(

1
2
‖u−wt−1‖2 + λ

(
`t(wt−1) + (u−wt−1)′∇`t (wt−1)

))
=

u−wt−1 + λ∇`t(wt−1)

which gives the approximated closed solution:

u = wt−1 − λ∇`t(wt−1) (2.1.11)

This update rule corresponds to the familiar stochastic gradient descent up-

date rule in Rd, with respect to the function `t(w). Thus the stochastic

gradient descent algorithm arises naturally as an approximate solution for

our general decision problem, when the loss function is convex and differ-

entiable in its first argument and the premetric is defined to be half of the

squared norm.

If we now further specify this result for the Hinge-Loss, we obtain:

wt
def
= u = wt−1 − λ∇`t(wt−1)

= wt−1 − λ∇ (1− yt〈wt−1,xt〉)+

= wt−1 + λytxt I{ŷt 6=yt}

which, for λ = 1 is exactly Perceptron update rule.

17

2.1.3 Bregman divergence optimization

We now introduce some useful tools (Cesa-Bianchi and Lugosi, 2006, Chap-

ter 11) for the definition and analysis of a larger class of linear classification

algorithms, including Perceptron as a special case.

2.1.6 Legendre function. A function F : A → R such that

• A ⊆ Rn is nonempty and its interior int(A) is convex

• F is strictly convex with continuous first partial derivatives throughout

int(A)

• if x1,x2, ... ∈ A is a sequence converging to a boundary point of A,

then ‖∇F (xn)‖ −−−→
n→∞

∞

is said to be a Legendre function.

2.1.7 Bregman divergence. Given a Legendre function F : A → R, the

non-negative function DF : int(A)→ R+ defined by:

DF (u,v) = F (u)− F (v)− 〈∇F (v), (u− v)〉 (2.1.12)

is called Bregman divergence induced by F .

It is easy to see that Bregman divergence is nothing but the difference

between F (u) and its first-order Taylor expansion around v. This diver-

gence is not a metric because it is not symmetric (DF (u,v) 6= DF (v,u))

and it does not satisfy the triangle inequality. However since F is convex,

DF (u,v) ≥ 0 and it is easy to verify that DF (u,u) = 0, it is a premetric.

2.1.8 Theorem. Bregman divergence is convex and differentiable in its first

argument.

Proof. We now fix v and consider DF (u,v) only as a function of its first

argument, so we can write:

DFv(u) = F (u)− 〈u,∇F (v)〉 − c

18

where c = F (v) − 〈∇F (v),v〉. Moreover, since F is convex, for every 0 <

λ < 1 we have that:

DFv(λu1 + (1− λ)u2) = F (λu1 + (1− λ)u2)− 〈λu1 + (1− λ)u2,∇F (v)〉 − c

≤ λF (u1) + (1− λ)F (u2)− λ〈u1,∇F (v)〉−

− (1− λ)〈u2,∇F (v)〉 − c

= λ (F (u1)− 〈u1,∇F (v)〉) +

+ (1− λ) (F (u2)− 〈u2,∇F (v)〉)− c

= λ (DFv(u1) + c) + (1− λ) (DFv(u2) + c)− c

= λ (DFv(u1)) + (1− λ) (DFv(u2)) + λc+ (1− λ)c− c

= λ (DFv(u1)) + (1− λ) (DFv(u2))

Finally, since F is differentiable, we have also that:

∇DFv(u) = ∇ (F (u)− 〈u,∇F (v)〉 − c) = ∇F (u)−∇F (v)

We now state without proving the last important result from convex

analysis.

2.1.9 Legendre dual. Given a Legendre function F : A → R, its Legendre

dual is the Legendre function F ∗ defined as:

F ∗(u) = sup
v∈A

(〈u,v〉 − F (v))

moreover, the Legendre dual F ∗∗ of F ∗ equals F and ∇F ∗ = (∇F)−1.

2.1.10 Example: p-norm. As an important example, the Legendre dual

of Φ(u) = 1
2‖u‖

2
p, p ≥ 2 is Φ∗(u) = 1

2‖u‖
2
q , where p and q are conjugate

exponents: 1
p + 1

q = 1. Moreover its gradient is given by:

∇Φ(u)i =
(
∇1/2‖u‖2p

)
i

=
sign(ui)|ui|p−1

‖u‖p−2
p

∇Φ∗(v)i =
(
∇1/2‖v‖2q

)
i

=
sign(vi)|vi|q−1

‖v‖q−2
q

for every u,v 6= 0. In agreement with Theorem 2.1.9, it is also possible to

verify that:

∇Φ (∇Φ∗(v)) = v

19

Gradient descent, again By supposing the loss function to be convex

and differentiable in Rd and by choosing d(u,wt−1) = DΦ(u,wt−1), where

Φ is a Legendre function called Potential function, we can restate the mini-

mization problem as follow:

wt = arg min
u∈RN

(DΦ(u,wt−1) + λ`t(u)) (2.1.13)

so that by setting its gradient to zero we obtain

∇
(
Φ(u)− Φ(wt−1)− (u−wt−1)′∇Φ(wt−1) + λ`t(u)

)
= 0

∇Φ(u)−∇Φ(wt−1) + λ∇`t(u) = 0

∇Φ(u) = ∇Φ(wt−1)− λ∇`t(u)

u = ∇Φ∗ (∇Φ(wt−1)− λ∇`t(u))

where the last equation is due to Theorem 2.1.9.

Again, this is not a closed form solution, but by substituting `t with its

first-order Taylor approximation around wt−1 we obtain the closed form

solution:

wt = ∇Φ∗ (∇Φ(wt−1)− λ∇`t(wt−1)) (2.1.14)

Moreover, if we specialize this result for the Hinge loss and arbitrarily fix

∇Φ(w0) = 0 we can write a generic sequence of weights as follow:

w1 = ∇Φ∗ (∇Φ(w0)− λ∇`1(w0)) = ∇Φ∗
(
λy1x1I{ŷ1 6=y1}

)
w2 = ∇Φ∗ (∇Φ (∇Φ∗ (λy1x1)) + λy2x2) = ∇Φ∗

(
λy1x1I{ŷ1 6=y1 + λy2x2I{ŷ2 6=y2}

)
...

wT = ∇Φ∗
(
λ

T∑
t=1

ytxtI{ŷt 6=yt}

)

therefore we can split the update rule into two steps:

vt = vt−1 + λytxtI{ŷt 6=yt}

wt = ∇Φ∗(vt)

where we call vt the primal weight, wt the dual weight and we have sup-

posed v0 = ∇Φ(w0) = 0. The resulting conservative potential-based binary

classification algorithm (for hinge loss) is shown in Figure 2.5.

20

Assume xt ∈ X ⊆ Rd, wt ∈ Rd and Φ is a Legendre function.

Initialization v0 = 0, w0 = ∇Φ(v0).

At each time t=1,2,....... do the following:

1: Observe instance xt ∈ X ;

2: Predict label yt ∈ {−1, 1} with ŷt = sign(〈wt−1,xt〉);
3: Observe actual label yt ∈ {−1, 1};
4: Update the weight vectors with:

vt = vt−1 + λytxtI{ŷt 6=yt} wt = ∇Φ∗(vt)

Figure 2.5: Conservative potential-based gradient descent

algorithm, for the hinge loss

Example: p-Norm algorithm If we set λ = 1 and Φ(u) = 1
2‖u‖

2
p (as

in example 2.1.10) the algorithm shown in Figure 2.5 becomes the p-Norm

algorithm which has Perceptron as a special case, when p = 2. The main

theoretical result for this class of algorithms is stated below (Gentile, 2003):

2.1.11 p-Norm proof of convergence. Let u ∈ R be an arbitrary compar-

ison vector. Then the number of mistakes m made by the p-norm algorithm

run on any finite sequence of examples (x1, y1), ..(xn, yn) ∈ R × {−1,+1}
satisfies:

m ≤ Ln(u) + (p− 1) (Xp‖u‖q)2 +Xp‖u‖q
√

(p− 1)Ln(u) (2.1.15)

where Xp = maxt=1,...,n‖xt‖p and Ln(u) =
∑n

t=1 (1− yt〈u,xt〉)+

Note that this is a relative bound because it employs the notion of “com-

parison vector”, this vector can be any other vector, so it can also be the

optimal vector. Note also that if the problem is linearly separable with

margin 1, the cumulative loss Ln(u) is zero because there exists a an opti-

mal separating vector u that always classifies correctly, so that the bound

reduces to:

m ≤ (p− 1) (Xp‖u‖q)2 (2.1.16)

21

2.2 Kernel Methods

As already underlined in the previous section, linear-threshold algorithms

can only learn linearly separable relations. However it is often the case that

data is not linearly separable by an hyperplane, but a separating hyperplane

could still be found by pre-mapping the original vectors xt ∈ X into a new

space φ(xt) ∈ F called the Feature Space (see Figure 2.6).

ϕ

Figure 2.6: φ maps the non-linearly separable dataset into a new space

where it is linearly separable

In order to achieve linear separability it is often necessary to non-linearly

map the original data into a Feature space of higher dimensionality, never-

theless in so doing we can incur the so called “curse of dimensionality” prob-

lem: algorithms complexity tends to grow exponentially with the growth of

dimensionality and if the number of parameters is too large with respect to

the number of training samples there could arise also the problem of over-

fitting.

One way to face these problems comes from kernel theory, that we are going

to present in this section1.

2.2.1 Dual formulation

Many learning algorithms can be re-cast into a dual formulation that de-

pends on data only via the inner product. Those algorithms enable us to
1For a full treatment of the subject refer to (Scholkopf, 2002) and (Shawe-Taylor and

Cristianini, 2004)

22

substitute the inner product with a kernel function. A kernel function is a

function that can be decomposed into a feature map φ into an Hilbert space

F , applied to both arguments and followed by the evaluation of the inner

product in F .

2.2.1 Kernel function. A function k(·, ·) that for all x, z ∈ X satisfies:

k(x, z) = 〈φ(x), φ(z)〉 (2.2.1)

where φ is a mapping from X to an Hilbert space F

φ : x → φ(x) ∈ F

is called kernel function.

If X is an Hilbert space, the simplest example of kernel function is the

one obtained considering the identity mapping φ(x) = x, in which case

k(x, z) = 〈x, z〉. Another simple example is given by the kernel function:

k(x, z) = 〈x, z〉2 = (x1z1 + x2z2)2 = x2
1z

2
1 + 2x1z1x2z2 + x2

2z
2
2

=
〈(
x2

1,
√

2x1x2, x
2
2

)
,
(
z2

1 ,
√

2z1z2, z
2
2

)〉
= 〈φ(x), φ(z)〉

where x, z ∈ R2 and φ(x) =
(
x2

1,
√

2x1x2, x
2
2

)
∈ R3.

Even if in the above example we can explicitly deal with the components

of the feature vectors, in general this is not possible. This limit is due to

the fact that there are many possible feature mappings associated with a

single kernel function and, as we will see in the section 2.2.2, kernel functions

can also be created without any explicit reference to the feature map. For

this reason we usually do not have access to the components of the images

Φ(xi) of the instance vectors, but only to the evaluation of inner products

〈Φ(xi),Φ(xj)〉 between them. However it is still possible to get many im-

portant informations about Φ(x). As an example we can easily compute the

norm of the image of an instance vector.

2.2.2 Norm of feature vectors. If x ∈ X is an instance vector and

k(xi,xj) = 〈Φ(xi),Φ(xj)〉, we can compute ‖Φ(x)‖2 in the following way:

‖Φ(x)‖2 =
√
‖Φ(x)‖22 =

√
〈Φ(x),Φ(x)〉 =

√
k(x,x) (2.2.3)

23

If Φ̂(x) = Φ(x)
‖Φ(x)‖2 is the normalized image of a vector x ∈ X , we can also

obtain the normalized kernel k̂(xi,xj) in the following way

k̂(xi,xj) = 〈Φ̂(xi), Φ̂(xj)〉 =
〈

Φ(xi)
‖Φ(xi)‖2

,
Φ(xj)
‖Φ(xj)‖2

〉
=
〈Φ(xi),Φ(xj)〉
‖Φ(xi)‖2‖Φ(xj)‖2

=
k(xi,xj)√

k(xi,xi)k(xj ,xj)
(2.2.4)

This function is by construction a kernel function.

2.2.3 Kernel as an Oracle. A kernel function can be thought as a simi-

larity measure between two inputs, as an oracle guessing the relatedness of

two data points. The choice of a kernel function may therefore reflect our

prior knowledge concerning the instance space X and should capture our

prior belief on the similarity between different examples.

2.2.4 “Kernel Trick”. Given an algorithm formulated in such a way that

it depends on instances only through their inner product, it is possible to

construct an alternative algorithm by replacing the inner products with a

kernel function. The algorithm is then said to be Kernelizable.

Advantages If an algorithm can be kernelized and if the kernel function

is properly chosen, instances x1,x2, ... are a-priori mapped into a feature

space of higher (even infinite) dimensionality where they are possibly linearly

separable, or better separable. The advantages of this procedure are that:

• there is no need to compute anything in the higher dimensional space

(we do not have access to the coordinates of the higher-dimensional

Feature Space)

• the number of parameters to be estimated becomes independent of the

dimensionality of the Feature Space

• it is possible to rely on well known linear threshold theory and algo-

rithms with convergence proofs

This results in a grown modularity of our previously introduced on-line clas-

sification model, that can now be seen as composed of three main elements:

1. the kernel function k(xi,xj)

24

Assume xt,w0 ∈ X ⊆ Rd and S is an index set.

Initialization w0 = 0, S = ∅.

At each time t=1,2,....... do the following:

1: Observe instance xt ∈ X ;

2: Predict label yt ∈ {−1, 1} with ŷt = sign
(∑

s∈S ysk(xs,xt)
)
;

3: Observe actual label yt ∈ {−1, 1};
4: if ŷt 6= yt then

5: S = S
⋃
{t}

6: end if

Figure 2.7: Perceptron Dual formulation

2. the distance function dw

3. the loss function `t

A simple example of a kernelizable algorithm is given again by the Per-

ceptron linear-threshold classifier. If we call S = {s1, s2, ..., sn} the set of

indexes of missclassified training examples, where n = |S|, we can re-express

the weight vector in the following form:

wt = 0 + ys1xs1 + ys2xs2 + · · ·+ ysnxsn =
∑
s∈S

ysxs (2.2.5)

The weight vector is thus a linear combination of the missclassified instances

that, in analogy to Support Vector Machines, are called support vectors. If

we now take into account the prediction phase we see that:

〈wt,xt〉 =

〈∑
s∈S

ysxs , xt

〉
=
∑
s∈S

ys〈xs,xt〉 (2.2.6a)

by the linearity of the inner product. So that:

ŷt = sign

(∑
S

ys〈xs,xt〉

)
(2.2.6b)

The dual-formulated algorithm clearly depends on data only via the inner

product 〈x,y〉 and it is therefore possible to replace the inner product with

a kernel function, as shown in Figure 2.7.

25

It is worth noting, however, that not all algorithms can be kernelized,

for example, the conservative potential-based algorithm shown in Figure

2.5 cannot be kernelized for all potentials. This is due to the fact that

wt = ∇Φ
(∑

s∈S ysxs
)

and it is not possible to express the algorithm only

in terms of inner product between instances:

〈wt,xt〉 =

〈
∇Φ

(∑
s∈S

ysxs

)
, xt

〉

If we would substitute the above inner product with a kernel function we

would break the assumption that all instances are a-priori mapped into the

same feature space. Of course, if we choose Φ(x) = 1
2‖x‖

2 we get back the

classical Perceptron update rule that, for what we have previously said, can

be kernelized.

2.2.2 Reproducing Kernel Hilbert Space theory

Once we have defined what a kernel function is and what algorithms can ex-

ploit its definition, the next logical questions are: what functions are kernel

functions? How can we construct them? In order to answer these questions

we have to introduce some more theory.

We start by the the definition of finitely positive semi-definite function

which, as we will see is the characterizing property of kernels.

2.2.5 Finitely positive semi-definite function. Let X be a metric space,

we say that a function:

k : X × X → R

is finitely positive semi-definite if it is a symmetric function and for all finite

sets x̃ ⊂ X , of size n, the n × n matrix K whose (i, j) entry is k(xi,xj) is

positive semi-definite, formally:

v′Kv ≥ 0 ∀v ∈ Rn (2.2.7)

The above mentioned matrix K is called Gramian matrix of k at x̃.

We now state and fully prove the main result of the Reproducing Kernel

Hilbert Space theory: the characterization Theorem of kernel functions.

26

2.2.6 Characterization of kernels. A function

k : X × X → R

is a kernel function k(x, z) = 〈φ(x), φ(z)〉 if and only if it satisfies the finitely

positive semi-definite property.

Proof. Let the K be the Gramian matrix of a kernel function k(xi,xj), for

i, j = 1, ..., n. For any vector v we have

v′Kv =
n∑

i,j=1

vivjk(xi,xj) =
n∑

i,j=1

vivj〈φ(xi), φ(xj)〉

=

〈
n∑
i=1

viφ(xi),
n∑
j=1

vjφ(xj)

〉
=

∥∥∥∥∥
n∑
i=1

viφ(xi)

∥∥∥∥∥
2

≥ 0

This proves the ’only if’ implication: “every kernel function satisfies the

finite positive semi-definite property”. In order to prove the ’if’ part we

will assume that k satisfies the finite positive semi-definite property and

explicitly construct a feature space associated to it. Let F0 be the space of

functions:

F0 =

{
n∑
i=1

αik(xi, ·) : xi ∈ X , αi ∈ R

}
(2.2.8)

This space is closed under multiplication by a scalar and addition of func-

tions. Indeed if f, g, h ∈ F are given by:

f(·) =
n∑
i=1

αik(xi, ·) g(·) =
m∑
j=1

βjk(zj , ·) and h(·) =
s∑
l=1

γlk(vl, ·)

we have that:

(λf)(x)
def
= λf(x) =

n∑
i=1

(λαi)k(xi, ·)

(f + g)(x)
def
= f(x) + g(x) =

n∑
i=1

αik(xi,x) +
m∑
j=1

βjk(zj ,x) =
n+m∑
h=1

ξh k(yh,x)

where:

ξh =

αh for h = 1, ..., n

βh−n for h = n+ 1, ..., n+m.
yh =

xh for h = 1, ..., n

zh−n for h = n+ 1, ..., n+m.

27

We can also introduce an inner product in it as follows:

〈f, g〉 =
n∑
i=1

m∑
j=1

αiβjk(xi, zj) (2.2.9)

=
n∑
i=1

αig(xi) =
m∑
j=1

βjf(zj) (2.2.10)

〈f, g〉 is real-valued, symmetric (by the finite positive semi-definite prop-

erty), bilinear and satisfies:

〈f, f〉 =
n∑

i,j=1

αiαjk(xi,xj) = α′Kα ≥ 0

〈f + g, h〉 =
n+m∑
h=1

s∑
l=1

ξhγl k(yh,vl)

=
n∑
i=1

s∑
l=1

αiγl k(xi,vl) +
m∑
j=1

s∑
l=1

βjγl k(zj ,vl)

= 〈f, h〉+ 〈g, h〉

〈f, k(x, ·)〉 =
n∑
i=1

αik(x,xi) = f(x) (Reproducing Property)

〈f, f〉 = 0↔ f = 0 is easily demonstrated by noting that:

f = 0→ 〈f, f〉 = 0

0 ≤ f(x)2 = 〈f, k(x, ·)〉2 ≤ 〈f, f〉k(x,x)

so that 〈f, f〉 = 0→ f = 0

Hence 〈f, g〉 is a strict inner product turning F0 into an inner product

space and a metric space, with the metric d given by d(f, g) = ‖f − g‖ =√
〈f − g, f − g〉. At this point, in order to transform F0 into an Hilbert

space, we have to prove that every Cauchy sequence in F0 has a pointwise

limit and we have to include all those limit points into F .

In the metric space F , a Cauchy sequence is a sequence of functions f1, f2, ...

such that:

lim
n→∞

sup
m>n
‖fm − fn‖ = 0 (2.2.11)

We now fix x ∈ Rn and consider the sequence of Real numbers f1(x), f2(x),

If f1, f2, ... is a Cauchy sequence in F0:

(fm(x)− fn(x))2 = 〈fm − fn, k(x, ·)〉2 ≤ ‖fm − fn‖2k(x,x)

28

and

lim
n→∞

sup
m>n
|fm(x)− fn(x)| ≤ lim

n→∞
sup
m>n
‖fm − fn‖

√
k(x,x) = 0

Where we have used the reproducing property and the Cauchy-Schwartz

inequality. Thus for every x, also f1(x), f2(x), ... is a Cauchy sequence and

by the completion of the Real numbers, it has a limit point. If we now

define:

g(x) = lim
n→∞

fn(x) (2.2.12)

and we take F to be the completion of F0 with respect to all such limit

functions, we obtain an Hilbert space associated with kernel k. We call this

Hilbert space the Reproducing Kernel Hilbert Space (RKHS).

Finally we choose φ to be defined as φ : x ∈ X → φ(x) = k(x, ·) ∈ F
and we apply the reproducing property to show that

〈φ(x), φ(z)〉 = 〈k(x, ·), k(z, ·)〉 = k(x, z)

This concludes the proof of the “if” implication: “every function that has

the finite positive semi-definite property is a kernel function”.

Finitely positive semi-definite property is thus the characterizing prop-

erty of kernel functions and we can exploit this knowledge to prove many

useful rules for manipulating kernels.

2.2.7 Closure properties of kernels. Let k1, k2 be kernels over X ×
X , X ⊆ Rn, α ∈ R+, f(·) a real valued function on X , φ :→ RN with k3

a kernel over RN × RN , and B a symmetric positive semi-definite n × n

matrix. Then the following functions are kernels.

k(x, z) = k1(x, z) + k2(x, z) (2.2.13)

k(x, z) = αk1(x, z) (2.2.14)

k(x, z) = k1(x, z)k2(x, z) (2.2.15)

k(x, z) = f(x)f(z) (2.2.16)

k(x, z) = k3 (φ(x), φ(z)) (2.2.17)

k(x, z) = x′Bz (2.2.18)

29

Proof. Every of these rules is easily proved to produce a finitely positive

semi-definite function (Shawe-Taylor and Cristianini, 2004), and thus a ker-

nel function.

Using the above properties we can now introduce some kernel functions.

2.2.8 Polynomial and exponential kernel. Let x, z ∈ X be two instance

vectors. If k1(x, z) is a kernel function, then also the following functions

are kernel functions:

• k(x, z) = p(k1(x, z)), where p(x) is a polynomial with positive coeffi-

cients

• k(x, z) = exp(k1(x, z))

Proof. The polynomial kernel results from the application of properties

2.2.13, 2.2.14 and 2.2.15, with (2.2.16) covering the constant term (by taking

f(·) = c). The exponential kernel results from the fact that the exponen-

tial function can be written as exp(x) = limt→∞
∑t

k=0
xk

k! which is a limit

of polynomial functions with positive coefficients. Therefore it is a limit of

kernel functions and since the semi-definite property is closed under taking

pointwise limits, it is a kernel function.

2.2.9 Gaussian kernel. Let x, z ∈ X be two instance vectors and σ ∈ R+

a positive constant. Then, the function:

k(x, z) = exp
(
−‖x− z‖2)

2σ2

)
(2.2.19)

is a kernel function called Gaussian kernel.

Proof. By Theorem 2.2.8 exp
(
〈x,z〉
σ2

)
is a kernel function. If we normalize

this kernel as in (2.2.4) we obtain:

exp
(
〈x,z〉
σ2

)
√

exp
(
‖x‖2
σ2

)
exp

(
‖z‖2
σ2

) = exp
(
〈x, z〉
σ2

− ‖x‖
2

2σ2
− ‖z‖

2

2σ2

)
= exp

(
‖x− z‖2

2σ2

)

30

Chapter 3

Matrix multi-view

Perceptron

In this section we present the on-line multi-view learning model (Cavallanti

et al., 2008) which has been specifically designed to manage the on-line

multi-view binary classification task. It is a straightforward matrix extension

of the conservative potential-based algorithm (compare in Figure 2.5 and

3.1), provided with a full multi-view analysis and a strict bound on the

number of errors.

Assume Xt,Vt ∈ X ⊆ Rd×K Wt ∈ Rd×K and Φ : Rd×K → R+ is

convex and differentiable.

Initialization V0 = 0, W0 = ∇Φ(V0).

At each time t=1,2,....... do the following:

1: Observe instance Xt ∈ X ;

2: Predict label yt ∈ {−1, 1} with ŷt = sign(〈Wt−1,Xt〉);
3: Observe actual label yt ∈ {−1, 1};
4: Update the weight vectors with:

Vt = Vt−1 + ytXtI{ŷt 6=yt} Wt = ∇Φ(Vt)

Figure 3.1: Matrix multi-view Perceptron algorithm

31

3.1 The model

Since we are now dealing with a matrix algorithm, we have to make some

modifications to our previous formalization:

• the instance space is now supposed to be X ⊆ Rd×K , which is itself a

vector space and it is also an inner product space, with the Frobenius

inner product 〈A,B〉 = Tr(A′B) =
∑

i,j aijbij

• at each time step t the forecaster observes a matrix Xt ∈ X , predicts

using a matrix Wt−1 ∈ Rd×K and its performance is evaluated against

a competitor matrix U ∈ Rd×K .

• we consider convex and differentiable potential functions Φ : Rd×K →
R+ of the form Φ = 1

2(f ◦ σ)2, where:

– r = min{d,K}

– σ : Rd×K → Rr, σ(A) = [σ1, ..., σr] = σA and σ1 ≥ σ2 ≥
· · · · · ·σr ≥ 0 are the Singular Values of A

– f : Rr → R+ is a vector norm, invariant under permutation of

the components of its argument.

Moreover, we specialize the algorithm to the the Schatten 2p-Norm

f (σ (X)) = ‖X‖S2p . Specifically, as in example 2.1.10, we will consider

the Legendre potential function: Φ(X) = 1
2‖X‖

2
S2p

which, for what we have

seen in (2.1.8) is still a convex premetric.

3.1.1 Schatten Norm. Given a matrix X ∈ Rd×K the Schatten p-norm of

X is given by:

‖X‖Sp

def
=

 ∑
σ∈σX′X

σp/2

1/p

= ‖σX′X‖
1/2
p/2 (3.1.1)

Note that, by singular value decomposition, X′X = VΣU′UΣV′ = VΣ2V′,

so that Tr(X′X) = Tr(VΣ2V′) = Tr(V′VΣ2) = Tr(Σ2) and therefore:

1
2

Tr
(
(X′X)p

) 1
p =

1
2

Tr
((

Σ2
)p) 1

p =
1
2

 ∑
σ∈σX′X

σp

1/p

=
1
2
‖X‖2S2p

=
1
2
‖σX′X‖p

(3.1.2)

32

Moreover, since:

1
2
‖X‖2S2p

=
1
2

 ∑
σ∈σX′X

σp

1/p

=
1
2

(∑
σ∈σX

σ2p

)2/2p

=
1
2
‖σX‖22p

we have also that:

‖X‖S2p = ‖σX‖2p (3.1.3)

We see that Φ(X) = 1
2‖X‖

2
S2p

is a potential function of the above specified

form 1
2(f ◦ σ)2, where f(·) is the vector 2p-norm ‖ · ‖2p and its dual is easily

computed by the following Theorem.

3.1.1 Theorem. The dual of Φ(X) = 1
2‖X‖

2
S2p

is Φ(X)∗ = 1
2‖X‖

2
S2q

, where
1
2p + 1

2q = 1

Proof. For what we have seen in example 2.1.10 if f(·) = 1
2‖ · ‖

2
2p, then

f∗(·) = 1
2‖ · ‖

2
2q. Moreover by (Lewis, 1995, Theorem 2.4)

(f ◦ σ)∗ = f∗ ◦ σ

therefore we have:

Φ(X)∗ =
(

1
2
‖X‖2S2p

)∗
=
(

1
2
‖σX‖22p

)∗
=

1
2
‖σX‖22q =

1
2
‖X‖2S2q

We still need to prove that Φ(X) = 1
2‖X‖

2
S2p

is a differentiable function

and to compute its gradient. These computations are quite long and not

very important, so we state them as a Theorem and redirect to (Cavallanti

et al., 2008) the interested reader.

3.1.2 Theorem. Φp(V) = 1
2‖V‖

2
S2p

is a differentiable function and its

gradient ∇Φp(V) is given by

∇Φp(V) = ∇1/2‖V‖2S2p
= Tr

((
V′V

)p) 1
p

(1−p) V
(
V′V

)p−1

= ‖V‖2(1−p)
S2p

V
(
V′V

)p−1 (3.1.4)

At this point we have all the machinery needed to use Schatten p-Norms

in Algorithm 3.1, however to better understand how matrix Perceptron can

be used in a multi-view context and what it actually computes with respect

to the single views, we need to give some more explanations on the multi-

view interpretation of this matrix algorithm.

33

Multi-view interpretation In a multi-view interpretation we see each

matrix as being composed of K single-view vectors, related to K different

views:

• Xt =
[
xt,1,xt,2, ...,xt,K

]
, xt,k ∈ Rd

• Vt =
[
vt,1,vt,2, ...,vt,K

]
, vt,k ∈ Rd

• Wt =
[
wt,1,wt,2, ...,wt,K

]
, wt,k ∈ Rd

• U =
[
u1,u2, ...,uK

]
, uk ∈ Rd

where the index {t, k}1 stands for the k view at time t and, as before, we

call Vt and vt,k primal weights, while Wt and wt,k are called dual weights.

Furthermore we set the loss function to be:

`t(U) =
K∑
k=1

[1− yt〈uk,xt,k〉]+ =
K∑
k=1

`t(uk) (3.1.5)

which amounts to separately penalize the K comparison vectors uk, each of

them evaluated on its own view instance xt,k. In so doing, the performance

of our matrix multi-view classifier is evaluated with respect to the sum of

the losses of K single-view classifiers.

Matrix Perceptron main theoretical result for this loss function is given

below (Cavallanti et al., 2008).

3.1.3 Matrix Perceptron proof of convergence. Let U be an arbitrary

comparison matrix of size d ×K, then the number of mistakes m made by

the 2p-norm matrix Perceptron, run on any finite sequence of examples

(X1, y1), (X2, y2), ..., (Xn, yn) ∈ Rd×K × {−1,+1}, satisfies

m ≤ Ln(U)
K

+ (2p− 1)
(

XS2p‖U‖S2q

K

)2

+
XS2p‖U‖S2q

K

√
(2p− 1)Ln(U)

K
(3.1.6)

where XS2p = maxt=1,...,n ‖Xt‖S2p and ‖U‖S2q is the Schatten 2q-Norm of

U, with 2q = 2p
2p−1

1in some parts of this section when the time index t is not relevant we omit it, in order

to keep the notation uncluttered.

34

Since Ln(U)/K = 1
K

∑K
k=1 `t(uk), a direct comparison to bound 2.1.11

shows that matrix Perceptron performs at least as good as the mean of K

Perceptron classifiers.

3.1.1 Prediction

Perceptron prediction is quite simple to understand: it predicts with the

signum of the projection of the instances on the weight vector. A similar

consideration could be done for matrix Perceptron, in a single view inter-

pretation, where the algorithm works with matrix single-view instances and

dual matrix weights. However if we treat it as a multi-view algorithm, where

each matrix is made up of K different view vectors, what can we say about

it? How are different view instances xk and weights vk combined together

in order to get the prediction?

We start by noting that, in analogy with what we have written in (2.2.5),

also for matrix Perceptron we can write:

Vt =
∑
s∈St

ysXs =
∑
s∈St

ys

[
xs,1 xs,2 · · · xs,K

]
=
[∑

s∈St
ysxs,1

∑
s∈St

ysxs,2 · · ·
∑

s∈St
ysxs,K

]
=
[
vt,1 vt,2 · · · vt,K

]
(3.1.7)

where, as before, St is the index set of the missclassified samples at time t

and:

vt,k =
∑
s∈St

ysxs,k (3.1.8)

Every single vt,k is computed in a similar way to Perceptron, so we could be

tempted to think on matrix Perceptron asK different Perceptrons running in

parallel on the K different views. However this interpretation is misleading

because:

1. in prediction matrix Perceptron uses the dual weight Wt−1, instead of

the primal Vt−1

2. matrix Perceptron updates the weights on all the single views in a

synchronous fashion. Therefore if for example a prediction error oc-

curs (with respect to the matrix Perceptron prediction function ŷt =

35

sign(〈Wt−1,Xt〉)) every single-view weight vector vk is updated, even

if it would have brought to a correct prediction with respect to the

single-view instance vector xk

Specifically, the way in which different single-view prediction margins are

combined together is:

〈Wt−1,Xt〉 = Tr
(
W′

t−1Xt

)
= Tr




w′t−1,1

w′t−1,2
...

w′t−1,K


[
xt,1 xt,2 · · · xt,K

]


=
K∑
k=1

〈wt−1,k , xt,k〉 (3.1.9)

With respect to the single-view dual weights wt−1,k, matrix Perceptron pre-

diction margin is therefore equal to the sign of the sum of the margins of

every single view xk.

Up to now we have seen how every single-view primal weight vector

vk is updated and how every single-view dual weight vector wk is used

in prediction. There is still a point missing: how the single-view primal

weight vector vk is transformed into the single-view dual weight vector wk

actually used in prediction. We have an explicit formula for the function

that transforms the primal weight matrix V into the dual weight matrix

W, but we do not have an explicit formula for the transforming function

applied to every single-view primal weight vk. In order to find this function

we have to express Wt in terms of Vt and look for a way to express wk

in terms of vk. At first, we note that by Theorem 3.1.2 Wt = ∇Φ(Vt) =

‖Vt‖2(1−p)
S2p

Vt (V′tVt)
p−1 and we can write matrix prediction rule as:

ŷt = sign(〈Wt−1,Xt〉) = sign (〈∇Φ(Vt−1),Xt〉)

= sign
(
‖Vt−1‖2(1−p)

S2p

〈
Vt−1

(
V′t−1Vt−1

)p−1
,Xt

〉)
= sign

(〈
Vt−1

(
V′t−1Vt−1

)p−1
,Xt

〉)
(3.1.10)

and, since V (V′V)n = (VV′)n V, we also have that:

ŷt = sign
(〈(

VV′
)p−1 V,Xt

〉)
. (3.1.11)

36

This last way of writing ŷt seems not computationally efficient, because

VV′ ∈ Rd×d, while V′V ∈ RK×K and usually K << d. However it can

be useful in problems where the number of views exceeds the dimension-

ality of the single-view instance vectors, moreover it will come back in the

subsequent analysis.

Prediction with respect to p We are now ready to start the analysis of

the behavior of matrix Perceptron algorithm, with respect to the parameter

p:

1. when p = 1, matrix Perceptron simply computes Tr (V′X) =
∑K

k=1 〈vk , xk〉.
Its prediction margin is therefore given simply by the sum of the K

single-view margins, given by K Perceptron-like predictions, on the K

different single-views instance vectors. In this case every single-view

primal weight vk is applied only on its own view xk and the different

views do not interact each-other.

2. if p = 2 we have that W = V (V′V) and:

V′V =


v′1
v′2
...

v′K


[
v1 v2 · · · vK

]
=


〈v1,v1〉 〈v1,v2〉 · · · 〈v1,vK〉
〈v2,v1〉 〈v2,v2〉 · · · 〈v2,vK〉

...
...

. . .
...

〈vK ,v1〉 〈vK ,v2〉 · · · 〈vK ,vK〉



W = V
(
V′V

)
=
[∑K

i=1 vi〈vi,v1〉
∑K

i=1 vi〈vi,v2〉 · · ·
∑K

i=1 vi〈vi,vK〉
]

=
[
F(v1) F(v2) · · · F(vK)

]
=
[
w1 w2 · · · wK

]

where F(·) is the transformation introduced in appendix A.1.

Exploiting this result, we can write:

ŷ = sign

(
K∑
k=1

〈F(vk) , xk〉

)

37

3. if p = 3, it is easy to verify that

wk =
K∑
j=1

〈∑K
i=1〈vk,vi〉vi,vj

〉
vj = F (F(vk)) = F2(vk)

where the exponent of the F does not refer to the power, but to the

multiple application of F to v.

Therefore, for p = 3 we have:

ŷ = sign

(
K∑
k=1

〈
F2(vk) , xk

〉)

The result for the general case is stated in the following Theorem.

3.1.2 Theorem. If Φp(·) = 1
2‖·‖

2
S2p

, Wt = ∇Φ(Vt) and vt,k is a single-

view primal weight vector of the multi-view matrix Vt. The corresponding

single-view dual vector wt,k is given by:

wt,k = Fp−1(vt,k) (3.1.12)

where F(·) is the transformation introduced in appendix A.1. and F0(vk) =

vk.

Moreover, by (A.2), in the linear case (when the inner product is not

substituted by a kernel function) we also have:

wk = Fp−1(vk) = (VV′)p−1vk (3.1.13)

Matrix Perceptron prediction can then be written as:

ŷ = sign

(
K∑
k=1

〈
Fp−1(vk) , xk

〉)
(3.1.14)

and, for the linear case, as:

ŷ = sign

(
K∑
k=1

〈(
VV′

)p−1 vk,xk
〉)

= sign

(
K∑
k=1

x′k(VV′)p−1vk

)
(3.1.15)

This last equation is very similar to what we wrote in (3.1.11), but here we

have underlined the role of each single view vector.

In this subsection we have shown that in the general case this algo-

rithm applies p − 1 times the transformation F(vk) =
∑K

i=1 vi〈vk,vi〉 to

38

each single-view primal weight vector vk and that in the linear case F(vk)

can be written as VV′vk, so Fp−1(vk) = (VV′)p−1 vk. Moreover, matrix

Perceptron prediction margin is given by the sum of the margins obtained

by these transformed vectors.

3.1.2 Kernelization

Is matrix Perceptron algorithm a kernelizable algorithm? The answer is yes,

as we will see shortly.

We start this analysis by noting that following the above established multi-

view interpretation we can write:

Vt =
∑
s∈St

ysXs =
∑
s∈St

ys

[
xs,1 xs,2 · · · xs,K

]
and

V′t−1Xt =
∑

s∈St−1

ys




x′s,1
x′s,2

...

x′s,K


[
xt,1 xt,2 · · · xt,K

]


=
∑

s∈St−1

ys


〈xs,1,xt,1〉 〈xs,1,xt,2〉 · · · 〈xs,1,xt,K〉
〈xs,2,xt,1〉 〈xs,2,xt,2〉 · · · 〈xs,2,xt,K〉

...
...

. . .
...

〈xs,K ,xt,1〉 〈xs,K ,xt,2〉 · · · 〈xs,K ,xt,K〉

 (3.1.16)

so that the computation of V′t−1Xt depends on the views xt,k only through

their inner product. Moreover, in case of misclassification we have Vt =

Vt−1 + ytXt and V′tVt can be written as:

V′tVt = (Vt−1 + ytXt)′(Vt−1 + ytXt)

= V′t−1Vt−1 + ytV′t−1Xt + ytX′tVt−1 + y2
tX
′
tXt

= V′t−1Vt−1 + yt
(
V′t−1Xt + (V′t−1Xt)′

)
+ X′tXt (3.1.17)

Therefore V′tVt can be computed iteratively using the products V′t−1Xt and

X′tXt, that for what we have seen before it depend on the views xt,k only

through their inner product.

39

Therefore it is possible to compute 〈Wt−1,Xt〉 = Tr
(
(V′t−1Vt−1)p−1V′t−1Xt

)
using the view vectors only through their inner product and we can apply

the Kernel Trick to substitute every inner product: 〈xt1,k1 ,xt2,k2〉 with a

valid arbitrary kernel k(xt1,k1 ,xt2,k2).

3.1.3 Low risk hypothesis extraction

As already stated in the model formalization 2.1.1, an on-line forecaster

produce an hypothesis ft in a space of hypotheses H at every time-step t. In

principle there is no warranty for the last hypothesis generated to generalize

better than the previous ones. How can then we extract a good hypothesis

from the ensemble of hypotheses generated by an on-line algorithm? In order

to answer this question we have to introduce the definition of risk. Risk can

be seen as: “the threat or probability that an action or event will adversely

or beneficially affect an organization’s ability to achieve its objectives”.

If we suppose that the learning algorithm is run on an independent and

identically distributed (i.i.d) sample from an underlying distribution (often

unknown), a risk function can be defined as the average loss of the labeled

instances, with respect to the underlying distribution.

3.1.4 Risk function. If a learning algorithm is run with a weight vector w,

on an independent and identically distributed sample drawn from the sample

space S of an underlying distribution P . The risk function R : Rd → R+ is

defined as:

R(w)
def
= E [`t(w)] =

∫
S
`t(w)dP (3.1.18)

This definition reflects the true expected value of the loss function, with

respect to the underlying distribution P . Since most of the time we do

not know the underlying distribution, we usually do not have access to the

empirical risk, however we can still estimate it with the sample mean.

3.1.5 Empirical risk function. If a learning algorithm is run with weight

a vector w, on an independent and identically distributed sequence of ex-

amples of length T , the empirical risk function Remp : Rd → R+ is defined

as:

Remp(w)
def
=

1
T
LT (w) (3.1.19)

40

where LT (w) is the cumulative loss of the sequence.

We now introduce other two simple statistics on the ensemble of hy-

potheses generated by an on-line algorithm and state an important result

proved in (Cesa-Bianchi et al., 2004).

Given a sample of length T and an on-line learner A, we call w0,w1, ...wT−1

the ensemble of hypotheses generated by A and we define the following sam-

ple statistic:

MT =
1
T

T∑
t=1

`t(wt−1) (3.1.20)

Moreover if the decision space D of A is a convex set and the loss function

` is convex, the average hypothesis w is given by

wT =
1
T

T∑
t=1

wt−1 (3.1.21)

3.1.6 Theorem. Let w0,w1, ...wT−1 be the ensemble of hypotheses gener-

ated by an arbitrary on-line algorithm A working with a convex loss function

0 ≤ ` ≤ 1. Then for any 0 < δ ≤ 1

P

(
R(wT) ≥MT +

√
2
T

ln
1
δ

)
≤ δ (3.1.22)

This Theorem states that with high probability the expected loss of the

average hypothesis is very near to the sample average loss encountered when

running the algorithm on a sample of size T , of instance/label pairs. This

means that if the samples are i.i.d. and we train an on-line algorithm on a

subset of size Ttr of a sample space of size T ; if Ttr is big enough we can

expect wTtr to perform as well as MTtr also on the remaining sample of size

Tte = T − Ttr.
If we are given a training set of Ttr labeled examples, a test set of Tte

unlabeled instances and we extract the mean hypothesis wTtr from the on-

line training, we can thus expect this hypothesis to perform as well as MTtr

also on the test set.

Matrix Perceptron mean weight As we have seen, in order to extract

a good hypothesis from the generated ensemble, we have to compute the

41

mean weight vector. For the matrix Perceptron algorithm we can compute

it in the following way:

WT =
1
T

T∑
t=1

Wt−1 =
1
T

T∑
t=1

Vt−1Ft−1 (3.1.23)

where Fk = (V′kVk)
p−1 ‖Vk‖

2(1−p)
S2p

. This formula is useful when matrix

Perceptron algorithm is used in its primal form. However when we are

dealing with kernels and matrix Perceptron algorithm is used in its dual

form, we have access to Vt−1 only through the inner product between single-

view instance vectors. We therefore have to find a way to express it with

respect to them.

We start by noting that, since VT =
∑

s∈ST
ysXs =

∑T
t=1 ytXtI{ŷt 6=yt},

we can write:

WT =
1
T

T∑
t=1

 ∑
s∈St−1

ysXs

Ft−1

This way of writing WT is very inefficient, because it needs the full sets

S1, S2, ...ST−1 of support matrices, encountered at every time-step t. More-

over it uses all the support matrices in all those sets in order to compute

the final average.

We can improve efficiency by noting that the set of support matrices St
at time-step t is included in the set of support matrices St+1 at time-step

t+ 1, so that we have: S1 ⊆ S2 ⊆ ... ⊆ ST , as shown in Figure 3.1.3.

Indeed the generic sequence of matrix Perceptron dual weights can be

STS4S3S2 ...S1

Figure 3.2: Relation between the sets of support vectors St, at consecutive

time-steps.

42

written as follow:

W0 = 0

W1 = y1X1F1I{ŷ1 6=y1}

W2 = y1X1F2I{ŷ1 6=y1} + y2X2F2I{ŷ2 6=y2}
...

WT−1 = y1X1FT−1I{ŷ1 6=y1} + y2X2FT−1I{ŷ2 6=y2} + ...+ yT−1XT−1FT−1I{ŷT−1 6=yT−1}

and if we sum over columns we obtain:

T∑
t=1

Wt−1 = y1X1

(
T−1∑
t=1

Ft

)
I{ŷ1 6=y1} + y2X2

(
T−1∑
t=2

Ft

)
I{ŷ2 6=y2}+

+ ...+ yT−2XT−2

(
T−1∑
t=T−2

Ft

)
I{ŷT−2 6=yT−2} + yT−1XT−1FT−1I{ŷT−1 6=yT−1}

=
T−1∑
t=1

ytXt

T−1∑
j=t

Fj

 I{ŷt 6=yt}

so that:

WT =
1
T

T−1∑
t=1

ytXt

T−1∑
j=t

(
V′jVj

)p−1 ‖Vj‖2(1−p)
S2p

 I{ŷt 6=yt}

=
1
T

∑
s∈ST

ysXs

T−1∑
j=t

Fj

 (3.1.24)

As we have seen in (3.1.17), it is possible to compute V′tVt using the single-

view instance vectors only through their inner products and therefore it

is also possible to compute (V′tVt)
p−1 and ‖V‖2(1−p)

S2p
= Tr ((V′V)p)

1
p

(1−p)

using the single-view instance vectors only through their inner product.

Concluding, if in the training phase, whenever there is a misclassification

error and a support matrix Xs is stored, the algorithm incrementally com-

putes and stores also F̄s =
∑T−1

j=ts
Fj (where ts is the time-step at which the

the misclassification happened), it is then possible to use the mean weight

statistic on the test set in the following way:

〈WT ,Xte〉 =
1
T

∑
s∈ST

ys Tr
(
F̄′s(X

′
sXte)

)
(3.1.25)

43

The advantage of this method is that in the testing phase the algorithm has

to compute only the 2|S| matrix products, while all the operations involved

in the computation of F̄s have already been completed during the training

phase. This way of averaging the weight matrices is thus slow in the training

phase, but allows fast predictions after the training has been completed.

3.2 Motivation for further work

Up to now we have presented Matrix Perceptron as a straightforward matrix

generalization of the Perceptron algorithm, provided with a full multi-view

analysis and a strict convergence bound. We have also shown how to apply

kernel trick with respect to the single-view instance vectors and how to

extract a low risk hypothesis from its primal and dual formulation. However

together with its new ideas and theoretical guarantees matrix multi-view

Perceptron algorithm brings also some questions:

• the algorithm computes inner products between different views ki, kj , i 6=
j. This means that all views are truly forced to belong to the same

space Rd, as previously stated in our multi-view interpretation. While

this fact seems natural in a matrix interpretation, it is quite unnatural

in a real multi-view setting: for example audio and visual features are

likely not expected to share the same instance space and indeed this

limitation is not present in any of the other multi-view approaches

cited in the introduction. How can we make this algorithm manage

views belonging to different spaces? Or, how can views belonging to

different spaces be mapped into a common space, in a significant way?

• we have seen in 2.2.3 that a kernel function can be seen as a similarity

measure between two inputs, however, since the algorithm computes

inner products between different views, we are faced the problem on

how to chose a similarity measure between different views. Indeed in

a problem with K views we have to choose K(K+1)
2 kernel functions.

While there is a lot of knowledge on which is the best kernel for a

certain kind of feature vectors, how can a similarity measure be chosen

between two different kind of feature vectors (for example an audio

44

feature vector and a video feature vector)?

• if X,Y ∈ Rd×K , the naive time complexity of matrix multiplication

X′Y is O(dK2). Matrix Perceptron algorithm predicts by computing

Tr
(

(V′V)p−1 V′Xt)
)

, therefore every prediction step involves p ma-

trix multiplication and its time complexity is O(pdK2), where p is a

parameter of the algorithm, d is the size of each view and K is the

number of views. This algorithm is therefore very inefficient for prob-

lems with many views. Is there a good computational approximation

of this algorithm able to cope with these kind of problems?

In order to turn matrix Perceptron into a more general and efficient multi-

view algorithm, applicable to real engineering problems we have to face these

problems. With this spirit, in the next Chapter we will propose a modified

version of matrix Perceptron, able to cope view vectors of different size and

with a lower computational complexity.

45

Chapter 4

Orthogonal matrix

multi-view Perceptron

As we have seen in the previous Chapter, one main problem of matrix Per-

ceptron algorithm is that every view is forced to have the same dimension-

ality: if for example the instance space is chosen to be Rd×K , every view

vector needs to be in Rd, otherwise it is technically not possible to directly

apply matrix Perceptron algorithm. However, in many multi-view problems

information comes from different sensors, or with a completely different rep-

resentation and it is unlikely to expect all the view vectors to belong to the

same space.

In this Chapter we propose a method to face the above mentioned prob-

lem. Specifically we propose to build an orthogonal instance matrix from

different view-vectors of different size. This kind of construction will prove

to be helpful in facing the above mentioned problems, moreover it will result

in a decreased computational time complexity of the original algorithm.

4.1 The model

If we are given K view vectors x1,x2, ...,xK of size d1, d2,, dK we can

construct a matrix X̃ ∈ RD×K , where D =
∑K

i=1 di, by pre-mapping the

view vectors into a new set of vectors x̃1, x̃2, · · · , x̃K ∈ RD, in the following

46

way:

X̃ =
[
Φ(x1) Φ(x2) · · · Φ(xK)

]

=


x1 01 · · · 01

02 x2 · · · 02

...
...

. . .
...

0K 0K · · · xK

 =
[
x̃1 x̃2 · · · x̃K

]
(4.1.1)

where 0k is a zero vector of size dk. Within this framework we thus have

the modified matrices:

• X̃t = [x̃t,1, x̃t,2, ..., x̃t,K], x̃t,k ∈ RD

• Ṽt = [ṽt,1, ṽt,2, ..., ṽt,K], ṽt,k ∈ RD

• W̃t = [w̃t,1, w̃t,2, ..., w̃t,K], w̃t,k ∈ RD

• Ũ = [ũ1, ũ2, ..., ũK], ũk ∈ RD

By construction X̃ is an orthogonal matrix, since we have:

〈Φ(xi),Φ(xj)〉 = 〈x̃i, x̃j〉 =

‖x̃i‖2 = ‖xi‖2 if j = i

0 otherwise.
(4.1.2)

and therefore

X̃′X̃ =


x̃′1
x̃′2
...

x̃′K


[
x̃1 x̃2 · · · x̃K

]

=


〈x̃1, x̃1〉 〈x̃1, x̃2〉 · · · 〈x̃1, x̃K〉
〈x̃2, x̃1〉 〈x̃2, x̃2〉 · · · 〈x̃2, x̃K〉

...
...

. . .
...

〈x̃K , x̃1〉 〈x̃K , x̃2〉 · · · 〈x̃K , x̃K〉

 =


‖x1‖2 0 · · · 0

0 ‖x2‖2 · · · 0
...

...
. . .

...

0 0 · · · ‖xK‖2


By (3.1.8) we see that every ṽt,k is a linear combination of the instance

vectors: ṽt,k =
∑

s∈St
ysx̃s,k. Therefore Ṽt is an orthogonal matrix too, and

47

it can be written as follow:

[ṽt,1, ṽt,2, ..., ṽt,K] =


vt,1 01 · · · 01

02 vt,2 · · · 02

...
...

. . .
...

0K 0K · · · vt,K

 (4.1.3)

where vk =
∑

s∈St
ysxs,k.

Moreover, by the expansion of V′X in (3.1.16), we see that also Ṽ′X̃ is

an orthogonal matrix with elements:

Ṽ′t−1X̃t =
∑

s∈St−1

ys


〈xs,1,xt,1〉 0 · · · 0

0 〈xs,2,xt,2〉 · · · 0
...

...
. . .

...

0 0 · · · 〈xs,K ,xt,K〉



=


〈vt−1,1,xt,1〉 0 · · · 0

0 〈vt−1,2,xt,2〉 · · · 0
...

...
. . .

...

0 0 · · · 〈vt−1,K ,xt,K〉

 (4.1.4)

Finally by (3.1.17), Ṽ′Ṽ can be expressed as a sum of orthogonal matrices

(Ṽ′X̃ and X̃′X̃), so that also Ṽ′t−1Ṽt−1 is an orthogonal matrix and by

definition 4.1 it can be written as:

Ṽ′t−1Ṽt−1 =


〈ṽt−1,1, ṽt−1,1〉 〈ṽt−1,1, ṽt−1,2〉 · · · 〈ṽt−1,1, ṽt−1,K〉
〈ṽt−1,2, ṽt−1,1〉 〈ṽt−1,2, ṽt−1,2〉 · · · 〈ṽt−1,2, ṽt−1,K〉

...
...

. . .
...

〈ṽt−1,K , ṽt−1,1〉 〈ṽt−1,K , ṽt−1,2〉 · · · 〈ṽt−1,K , ṽt−1,K〉



=


‖vt−1,1‖2 0 · · · 0

0 ‖vt−1,2‖2 · · · 0
...

...
. . .

...

0 0 · · · ‖vt−1,K‖2

 (4.1.5)

4.1.1 Prediction

We are now ready to derive the prediction formula computed by the or-

thogonal matrix Perceptron. As we have seen in 3.1.10 matrix Perceptron

48

prediction is computed as:

ŷt = sign
(

Tr
((

V′t−1Vt−1

)p−1 V′t−1Xt

))
by equations 4.1.4 and 4.1.5 we have:
“
V
′
t−1Vt−1

”p−1
V
′
t−1Xt

=

26666664
‖vt−1,1‖2 0 · · · 0

0 ‖vt−1,2‖2 · · · 0

.

.

.

.

.

.
.
.
.

.

.

.

0 0 · · · ‖vt−1,K‖2

37777775

p−1

×

×

26666664
〈vt−1,1, xt,1〉 0 · · · 0

0 〈vt−1,2, xt,2〉 · · · 0

.

.

.

.

.

.
.
.
.

.

.

.

0 0 · · · 〈vt−1,K , xt,K〉

37777775

=

26666664
‖vt−1,1‖2(p−1)〈vt−1,1, xt,1〉 0 · · · 0

0 ‖vt−1,2‖2(p−1)〈vt−1,2, xt,2〉 · · · 0

.

.

.

.

.

.
.
.
.

.

.

.

0 0 · · · ‖vt−1,K‖2(p−1)〈vt−1,K , xt,K〉

37777775

so that:

Tr
((

V′t−1Vt−1

)p−1 V′t−1Xt

)
=

K∑
k=1

‖vt−1,k‖2(p−1)〈vt−1,k,xt,k〉

and finally:

ŷt = sign

(
K∑
k=1

‖vt−1,k‖2(p−1)〈vt−1,k,xt,k〉

)
(4.1.6)

This last equation is exactly what we obtain using (3.1.15). Indeed it is easy

to see that whenever V is an orthogonal matrix:

VV′vj =
K∑
k=1

vkv′kvj =
K∑
k=1

vk〈vk,vj〉 = vj‖vj‖2

and (
VV′

)p−1 vj = ‖vj‖2(p−1)vj

therefore again:

ŷt = sign

(
K∑
k=1

〈(
Vt−1V′t−1

)p−1 vt−1,k,xt,k
〉)

= sign

(
K∑
k=1

‖vt−1,k‖2(p−1)〈vt−1,k,xt,k〉

)
(4.1.7)

49

We thus see that orthogonal matrix Perceptron prediction is equal to the

sum of single-view prediction margins, each one weighted with a power of

the norm of the single-view primal weight. The resulting algorithm is shown

in Figure 4.1.

Assume xt,k,vt,k ∈ Xk ⊆ Rdk , for k = {1, ..K}.
Initialization vk,0 = 0, for k = {1, ..K}.
At each time t=1,2,....... do the following:

1: Observe K instance vectors xt,k ∈ Xk;

2: Predict label yt ∈ {−1, 1} with:

ŷt = sign
(∑K

k=1 ‖vt−1,k‖2(p−1)〈vt−1,k,xt,k〉
)

;

3: Observe actual label yt ∈ {−1, 1};
4: Update the weight vectors with:

vk,t = vk,t−1 + ytxk,tI{ŷt 6=yt}

Figure 4.1: Orthogonal matrix multi-view Perceptron algo-

rithm

Problems addressed As we can see in (4.1.7), our new prediction formula

involves K inner products between vectors, instead of matrices. Therefore

the computational complexity in time of every prediction of our algorithm

is decreased to O(pdK) and it is now possible to use it in problems with an

high number of views. Moreover the algorithm obtained in this way does not

compute inner products between different views. This means that different

views are now free to lie in different spaces and if the learning problem has

K different views, we have to choose only K kernel functions, one for each

view, instead of K2 kernel functions. In this way we also avoid the problem

of how to choose a similarity measure between different views.

Orthogonal matrix Perceptron algorithm thus addresses the problems

underlined at the end of previous Chapter, however in order to understand

if our solution is really successful we have to measure its classification per-

formances compared to the original algorithm and to other baselines. With

this goal in mind in the following part of the thesis we will provide some

experimental results in different settings.

50

4.2 Experiments

In order to assess the performances obtained by the modified algorithm we

have tested it on some datasets, comparing it to few significant baselines.

All the algorithms have been implemented and tested in MATLAB.

4.2.1 Adult dataset

We run our first experiment on the a9a Adult dataset (preprocessed by

(Platt, 1998) for binary classification) which consists of 32561 sparse sample

vectors in R123. Since this dataset is not multi-view, we processed it again in

order to artificially obtain a multi-view dataset in the following way: every

sparse and binary feature vector xt ∈ R123 is projected it into R122 and

then split into two vectors x1,x2 ∈ R61. From these two vectors we build

a matrix X =
[
x1,x2

]
∈ R61×2. In this way we artificially obtain a multi-

view dataset where the two views belonged to the same space, so that we

could test the original algorithm and compare its performances against our

orthogonal version. We run this experiment on 10 different permutations of

0 5 10 15 20 25
20

21

22

23

24

25

26

27

28

29

E
rr
o
r
R
a
te

p

Perceptron on 1st half
Perceptron on 2st half
Perceptron on full
2-VIEWS MMP
2-VIEWS OMMP

0 5 10 15 20 25
-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

E
rr

o
r

R
a
te

p

Perceptron on full
2-VIEWS MMP

0 5 10 15 20 25
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

E
rr

o
r

R
a
te

p

2-VIEWS MMP
2-VIEWS OMMP

Figure 4.2: Adult a9a. Error Rate with linear kernel.

51

the order of the instances and for p = {1, 2, .., 20}. Moreover we used two

different kernels:

• linear kernel 〈x,y〉 = x′y

• Gaussian kernel 〈x,y〉 = exp(−‖x−y‖2
2σ2) (see Theorem 2.2.9)

Results are shown in Figures 4.2 and 4.3, MMP stands for “Matrix Multi-

view Perceptron”, while OMMP stands for “Orthogonal Matrix Multi-view

Perceptron”. In both the Figures the first plot compares the ER of Percep-

tron run on the two single-view vectors, Perceptron run on the concatenated

single-view vector xc =
[
x′1,x

′
2

]′
, MMP and OMMP. In this graph we see

that with the proper choice of p both MMP and OMMP can improve the

performances of Perceptron. Moreover it is not possible to distinguish MMP

performances from OMMP.

In the second and third graphs in order to better discriminate the be-

havior of the algorithms, variances are computed on the difference between

couples of forecasters; this kind of computation diminish the effect of the

variance due to the permutations. The second plot compares the ER ob-

0 5 10 15 20 25
21

22

23

24

25

26

27

E
rr
o
r
R
a
te

p

Perceptron on 1st half
Perceptron on 2st half
Perceptron on full
2-VIEWS MMP
2-VIEWS OMMP

0 5 10 15 20 25
-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

E
rr

o
r

R
a
te

p

Perceptron on full
2-VIEWS MMP

0 5 10 15 20 25
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

E
rr

o
r

R
a
te

p

2-VIEWS MMP
2-VIEWS OMMP

Figure 4.3: Adult a9a. Error Rate with Gaussian kernel.

52

tained by Perceptron and MMP, showing that with the linear kernel MMP

can gain as much as 1%, while with the Gaussian kernel its gain is slightly

lower. Finally the third plot compares the performances obtained by MMP

and OMMP. Even in this last plot we see that it is not possible to signif-

icantly discern the behavior of the two multi-view algorithms. Therefore,

with respect to this classification task we can say that our algorithm is a

good approximation of the original MMP.

4.2.2 News20 dataset

News20 dataset is a very sparse binary dataset which has been adapted

to the binary classification task by (Keerthi and DeCoste, 2005). Being

composed of 19996 binary instances in R1355190, the dataset is perfect for

linear-threshold algorithms that can take advantage of the high dimension-

ality of the space. As in case of Adult dataset we used it to artificially

create a multi-view dataset and to compare the performances of Perceptron

on every single view, Perceptron on the full vector, MMP and OMMP. We

run the experiment on 5 different permutations of the order of the instances

0 2 4 6 8 10

9.8

10

10.2

10.4

10.6

10.8

11

11.2

11.4

11.6

E
rr
o
r
R
a
te

p

Full-View Perceptron
2-VIEWS MMP
2-VIEWS OMMP
PERC-Sub1
PERC-Sub2

0 2 4 6 8 10
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

D
iff
e
re
n
c
e
o
n
E
rr
o
r
R
a
te

p

Full-View Perceptron
2-VIEWS MMP

0 2 4 6 8 10
-0.15

-0.1

-0.05

0

0.05

0.1

D
iff

e
re

n
c
e

o
n

E
rr

o
r

R
a
te

p

2-VIEWS MMP
2-VIEWS OMMP

Figure 4.4: News20. 2-views Error Rate with linear kernel

53

9.8

9.8

9.82

9.82

9.82

9.84
9.84

9.84

9.84
9.84

9.86
9.86 9.86

9.86

9.86

9.88

9.88

9.88

9.88

9.9

9.9

9.9

9.9

9.9

9.9

9.92

9.92

9.94

n
.

o
f

vi
e
w

s

p
1 2 3 4 5 6 7 8

1

2

3

5

6
OMMP ER

9.78

9.8

9.8

9.82

9.82

9.82
9.82

9.84

9.84

9.84

9.84

9.86

9.86

9.86

9.86

9.86

9.88
9.88

9.88

9.88

9.88
9.9

9.9

9.9

9.9

9.9

9.92

9.92

9.92

9.94

n
.

o
f

vi
e
w

s

p
1 2 3 4 5 6 7 8

1

2

3

5

6
MMP ER

Figure 4.5: News20. Error Rate with linear kernel, with respect to the

number of splits (views) and to p.

and for p = {1, 2, .., 8}, using only the linear kernel. Moreover this time we

tested the dataset by splitting every original instance vector into 2, 3, 5 and

6 single-view vectors. Since in this case the original instance vectors were

normalized, we also re-normalized the single-view vectors resulting from the

splits. This is the reason why in this case the performance obtained by MMP

and OMMP with p = 1 and linear kernel are not equal to those obtained by

Perceptron on the full-length vector.

In Figure 4.4 we plot the results for the 2-views case. As in the case

of Adult dataset, there is no appreciable difference in the performances

obtained by MMP and OMMP, moreover in this setting there is also no

appreciable gain in performances with respect to the Perceptron baseline.

This situation does not change by modifying the number of views, as can

be seen in Figure 4.5 where we plot the variation in the ER with respect to

the number of views and p.

4.2.3 Eth-80 dataset

Eth-80 is a dataset for object categorization introduced in (Leibe and Schiele,

2003). It contains 80 objects from 8 categories: apples, pears, tomatoes,

cows, dogs, horses, cups and cars, moreover for each category 10 different

objects are provided and each object is represented by 41 images from dif-

ferent viewpoints.

In this experiment we tried to directly compare our multi-view algo-

rithm to the Online Multi-Cue Learning (OMCL) algorithm (Jie et al.,

54

Figure 4.6: Eth-80 dataset of pictures

2009), which was proved to achieve good categorization performances on

this dataset. OMCL adopts an high-level integration scheme by combining

two levels of classifiers: at the first level a Projectron++ (Orabona et al.,

2008) is trained for every view, while on the second level a Passive-Aggressive

Online algorithm (Crammer et al., 2006) is used to optimally combine the

confidence measures obtained by the classifiers on the first level.

Following the approach introduced in (Jie et al., 2009), every image was

represented by four descriptors: one color feature (RGB color histogram),

two texture descriptors (Composed Receptive Field Histogram (Linde and

Lindeberg, 2004) with two different kinds of filters: Gaussian derivative

LxLy and gradient direction DirC) and a global shape feature (centered

masks). The features extracted in this way lie in spaces of different dimen-

sionality, so that for this experiment we could not make use of the original

MMP algorithm. Therefore we used our OMMP algorithm with four dif-

ferent kernels applied to the four different views: a Gaussian kernel for the

shape feature and three chi2 kernels (Fowlkes et al., 2004) for the remaining

views. The parameters of each kernel function were estimated by cross-

55

validation [Chapter 1](Bishop, 2006).

Finally, in order to stress the generalization abilities of our algorithm, we

applied the technique explained in section 3.1.3 to extract a low risk hy-

pothesis from a training set and assess the performances of this hypothesis

on a test set.

Since OMMP is a binary classification algorithm we considered only

binary classification problems, specifically we selected the following binary

classification problems:

• horses and pears

• cows and dogs

In so doing there is an equal number of samples for each class and the binary

learning tasks are balanced. For each problem we had 2 ∗ 10 ∗ 41 = 820

samples that we divided into a training set containing 70% of the samples

and a test set containing the remaining samples, moreover we run every

experiment on 10 different random permutations of the samples and for

p = {1, 2, .., 20}.
The first problem was chosen for its simplicity: horse and pears should

be easily discriminated. However after having seen the results of this ex-

periment we realized that the problem was too simple, indeed the color and

shape views obtained an ER near to zero, while the worst view achieved an

ER below 14% in the training phase. Therefore we tried the more difficult

task to discriminate cows and dogs. As we can see in Figure 4.9, this task is

significantly more difficult than the previous one: the worst view obtains an

ER near to 40%, while other two views achieve an ER near to 25%. However

the color view still obtains a very low ER also for this problem.

The results of the experiments are summarized in Figures 4.7, 4.8, 4.9

and 4.10. Every Figure is divided into three lines: in the first line we

plot the performances obtained by OMMP using two, three and four views,

and the performances obtained by the same algorithm using only the single

views. In the second line we plot the performances of OMMP compared

to OMCL using two and four views, while in the third and last line we

compare the performances obtained using two or four views in OMMP, to

the performances obtained by the best of the related single-views.

56

0 5 10 15 20
0

2

4

6

8

10

12

14

p

E
rr
o
r
R
a
te

SHAPE−MASK

COLOR−HIST

TEXTURE−LxLy

TEXTURE−DirC

4−VIEWS

4−VIEWS OMCL

2−VIEWS:LxLy−DirC

2−VIEWS OMCL

0 5 10 15 20
−1

0

1

2

3

4

p

D
iff

e
re

n
ce

 o
n

 E
rr

o
r

R
a

te

2−Views OMCL

2−Views OMMP

0 5 10 15 20
−2.5

−2

−1.5

−1

−0.5

0

0.5

p

D
if
fe

re
n
ce

 o
n

 E
rr

o
r

R
a

te

4−Views OMCL

4−Views OMMP

0 5 10 15 20
−6

−5

−4

−3

−2

−1

0

p

D
iff
e
re
n
ce
 o
n
 E
rr
o
r
R
a
te

Best View:TEXTURE−DirC

2−Views OMMP

0 5 10 15 20
−0.5

0

0.5

1

1.5

2

p

D
iff
e
re
n
ce
 o
n
 E
rr
o
r
R
a
te

Best View:COLOR−HIST

4−Views OMMP

Figure 4.7: Eth-80, horses and pears Training Error Rate

57

0 5 10 15 20
0

1

2

3

4

5

p

E
rr
o
r
R
a
te

SHAPE−MASK

COLOR−HIST

TEXTURE−LxLy

TEXTURE−DirC

4−VIEWs

4−VIEWs OMCL

2−VIEWS:LxLy−DirC

2−VIEWs OMCL

0 5 10 15 20
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

p

D
iff

e
re

n
ce

 o
n

 E
rr

o
r

R
a

te

2−Views OMCL

2−Views OMMP

0 5 10 15 20
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

p

D
if
fe

re
n
ce

 o
n

 E
rr

o
r

R
a

te

4−Views OMCL

4−Views OMMP

0 5 10 15 20
−5

−4

−3

−2

−1

0

p

D
iff
e
re
n
c
e
 o
n
 E
rr
o
r
R
a
te

Best View:TEXTURE−LxLy

2−Views OMMP

0 5 10 15 20
−1

−0.5

0

0.5

1

1.5

p

D
iff
e
re
n
ce
 o
n
 E
rr
o
r
R
a
te

Best View:COLOR−HIST

4−Views OMMP

Figure 4.8: Eth-80, horses and pears Testing Error Rate

In the horses and pears experiment the texture views obtain very similar

“bad” performances. However by using them together, both OMMP and

OMCL algorithms perform much better. With respect to this two views and

only in the training phase OMCL algorithm slightly outperforms OMMP.

Finally, by using together all the four views, both algorithms do not succeed

in improving the almost perfect classification obtained by the color view.

58

0 5 10 15 20
0

5

10

15

20

25

30

35

40

p

 E
rr
o
r
R
a
te

SHAPE−MASK

COLOR−HIST

TEXTURE−LxLy

TEXTURE−DirC

4−VIEWS

4−VIEWS OMCL

3−VIEWS:Shape−LxLy−DirC

3−VIEWS OMCL

2−VIEWS:Shape−LxLy

2−VIEWS OMCL

0 5 10 15 20
−4

−3

−2

−1

0

1

2

p

D
iff

e
re

n
c
e
 o

n
 E

rr
o

r
R

a
te

2−Views OMCL

2−Views OMMP

0 5 10 15 20
−4

−3

−2

−1

0

1

2

3

4

p

D
if
fe
re
n
ce
 o
n
 E
rr
o
r
R
a
te

3−VIEWS OMCL

3−Views OMMP

0 5 10 15 20
−2

−1

0

1

2

3

4

p

D
if
fe

re
n
ce

 o
n

 E
rr

o
r

R
a

te

4−Views OMCL

4−Views OMMP

0 5 10 15 20
−4

−3

−2

−1

0

1

2

3

p

D
iff
e
re
n
c
e
 o
n
 E
rr
o
r
R
a
te

Best View:SHAPE−MASK

2−Views OMMP

0 5 10 15 20
−1

0

1

2

3

4

p

D
if
fe
re
n
c
e
 o
n
 E
rr
o
r
R
a
te

Best View:COLOR−HIST

4−Views OMMP

Figure 4.9: Eth-80, cows and dogs Training Error Rate

59

0 5 10 15 20
0

5

10

15

20

25

30

35

p

E
rr

o
r

R
a

te

SHAPE−MASK

COLOR−HIST

TEXTURE−LxLy

TEXTURE−DirC

4−VIEWs

4−VIEWs OMCL

3−VIEWS:Shape−LxLy−DirC

3−VIEWS OMCL

2−VIEWS:Shape−LxLy

2−VIEWS OMCL

0 5 10 15 20
−8

−6

−4

−2

0

2

4

p

D
iff

e
re

n
ce

 o
n
 E

rr
o

r
R

a
te

2−Views OMCL

2−Views OMMP

0 5 10 15 20
−6

−4

−2

0

2

4

p

D
iff
e
re
n
ce

 o
n
 E
rr
o
r
R
a
te

3−VIEWS OMCL

3−Views OMMP

0 5 10 15 20
−1

−0.5

0

0.5

1

1.5

p

D
iff

e
re

n
ce

 o
n
 E

rr
o

r
R

a
te

4−Views OMCL

4−Views OMMP

0 5 10 15 20
−8

−6

−4

−2

0

2

4

p

D
if
fe
re
n
ce

 o
n
 E
rr
o
r
R
a
te

Best View:TEXTURE−LxLy

2−Views OMMP

0 5 10 15 20
−1

−0.5

0

0.5

1

1.5

p

D
if
fe
re
n
ce
 o
n
 E
rr
o
r
R
a
te

Best View:COLOR−HIST

4−Views OMMP

Figure 4.10: Eth-80, cows and dogs Testing Error Rate

In the cows and dogs experiments the texture view with Gaussian deriva-

tive LxLy and the shape view obtain very similar performances. In the

training phase, with respect to these views both OMMP and OMCL fail to

significantly improve the performances obtained by the best of the single

views. However, in the test phase and for the the correct value of p, OMMP

can obtain significantly improved performances with respect to the best sin-

gle view and to OMCL. Finally, by considering all the four views, both the

OMCL and the OMMP algorithms fail to improve the performances ob-

60

tained by the best single view, which again in the testing phase reaches the

almost perfect categorization performance.

Note also that if X,V ∈ Rd×1 (that is if the multi-view instance matrices

are actually single-view vectors) we have:

〈∇Φ(V),X〉 = ‖V‖2(1−p)
S2p

Tr
((

V′V
)p−1 V′X

)
= ‖v‖2(1−p)

2 Tr
(
‖v‖2(p−1)

2 〈v,x〉
)

= ‖v‖2(1−p)+2(p−1)
2 〈v,x〉 = 〈v,x〉

where x,v ∈ Rd are the vectors corresponding to X,V and ‖ ·‖2 is the usual

vector norm. When matrix Perceptron is run with just one view, p becomes

thus immaterial and matrix Perceptron algorithm turns out to be exactly

Perceptron algorithm. This is the reason why with respect to the single view

problems, matrix Perceptron performance is constant with respect to p.

4.3 Discussion of the results

In this Chapter we have presented a variant of the MMP algorithm aimed

to solve the problems underlined at the end of the previous Chapter. More-

over we have measured the performances obtained by the resulting OMMP

algorithm in several different classification tasks.

In the first two experiments (namely on the Adult and News20 datasets)

we have seen that OMMP performances are not discernible from the perfor-

mances obtained by the original MMP algorithm. This fact could be due to

the sparsity of the instance vectors: when two vectors are highly sparse, we

could expect their inner product to be near to zero.

On the other hand, in the last experiment we compared the OMMP algo-

rithm to another multi-view algorithm called OMCL. The results of this

experiment have highlighted that whenever there is a view that achieves al-

most perfect classification, both the OMMP and OMCL algorithms using all

the four views fail to improve the performances obtained by the best view.

However, if the views are more balanced, the two algorithms can actually

improve the performances obtained by the best of these views. The compar-

ison between OMMP and OMCL is interesting because the two algorithms

stems from two completely different approaches, while still achieving similar

classification performances.

61

Chapter 5

Conclusions and future works

The research work undertaken during these months has helped to shed some

more light on the strength and weakness points of the multi-view learning ap-

proach adopted by Cavallanti et al. (2008). We have seen that even if MMP

algorithm has some bad limitations such the constraints on the dimension-

ality of the views, it is possible to derive a modified and simplified version

of the algorithm that overcomes the limits of the original one. This ver-

sion of the algorithm, called OMMP is based on a simple orthogonalization

technique and can be seen as as specific instance of the original algorithm,

when all the instance matrices are supposed to share a common structure

(namely the orthogonal form). In this way we obtain an algorithm that can

efficiently manage many different views lying in different spaces and that

can be formulated in a dual version, allowing the substitution of one kernel

function for each view. We have also provided some analytical insights on

the behavior of the two algorithms with respect to the single-view vectors

and we have successfully applied an on-line to batch conversion technique to

the dual formulated multi-view algorithms. Finally we have also compared

the performances obtained by the two algorithms and the performances ob-

tained by a third multi-view algorithm Jie et al. (2009). Even if OMMP

has obtained good classification performances, compared to both MMP and

OMCL, weak experimental results shows that the problem of learning from

multiple views is still far from being solved. Hereby we state some of the

possible future research directions that we would like to follow:

62

Bound Even if we have successfully proved some useful theorems related

to MMP and OMMP, we still don’t have a specific mistake bound for the last

algorithm. The only bound applicable to it is the mistake bound of MMP.

However we don’t have a specific analysis able to describe the behavior of

the OMMP algorithm and to bound the number of mistakes. Therefore

we cannot theoretically compare the performances obtained by the original

MMP algorithm to the performance obtained by the OMMP algorithm. One

natural task at this point should thus be to try to make a vectorial analysis

of the algorithm in order to obtain a specific mistake bound.

Aggressive updates It is known that it is sometimes possible to improve

the classification performances obtained by an on-line classifier, by optimally

tuning a learning rate in order to update the weight vector more aggressively,

whenever the margin is below a certain threshold (see (Shalev-Shwartz and

Singer, 2005) and (Crammer et al., 2006)). While the OMCL algorithm

adopts an aggressive strategy for his top level classifier, MMP and OMMP

are instead forced to keep a conservative policy. In order to better compete

with OMCL and to assess how an aggressive policy could be helpful also

in matrix multi-view classification tasks, we have already conducted some

researches on how to optimally tune a learning rate for the aggressive policy.

However in order to reach the goal there is still some work to do..

Leaving the span Warmuth and Vishwanathan (2006) have shown that

some simple sparse linear problem are hard to learn with any algorithm

that uses a linear combination of the training instances as its weight vector.

However the same problems can be efficiently learned using the Exponen-

tiated Gradient (Kivinen and Warmuth, 1997) algorithm, which basically

seeks its solutions in a space larger than the space spanned by the training

vectors. In Appendix A.2 we prove that if instances are of a certain form

and we artificially add an orthogonal component V⊥ to the primal weight

matrix V, we can affect matrix Perceptron prediction, through the norm of

the single-view primal weight vectors vk⊥. Since these vectors are not in

the span, they cannot be learned by matrix Perceptron. Is it possible to im-

prove matrix Perceptron predictions by adding a orthogonal components to

63

the weight vectors? Is it possible to learn these orthogonal components, or at

least their norm? It would be interesting to try to answer these questions.

Feature vectors combinations Up to now we have explored the possi-

bilities opened by the orthogonalization technique introduced in this Chap-

ter. However, orthogonalization is not the only possible approach to address

some of the problems highlighted at the end of Chapter 3. For example if

we do not take into account the efficiency problems and the problem of how

to chose a similarity measure between different views, we could experiment

other approaches such as repetition or zero-padding of the short vectors (or

part of te vectors), in order to reach the length of the longest vector.

Group Norms Last but not least we would like to deepen also the rela-

tionships between the our algorithm and the framework based on the group

norms introduced by Kakade et al. (2009).

64

Appendix A

A.1 Fourier series in Hilbert spaces

We hereby introduce the definition of Fourier series of an element in an

Hilbert space.

A.1 Fourier series. If H is an Hilbert space and S = {v1,v2, ...vK : vi ∈
H} is a set in H, we define the transforming function F : S → H as

F(xk) =
K∑
i=1

〈xk,vi〉vi xk ∈ span(S) (A.1)

Whenever S is an orthonormal set, this transformation is called Fourier

series of vk by S.

In the orthonormal case, for every xk ∈ span(S) we have:

F(xk) =
K∑
i=1

〈xk,vi〉vi = xk

as we see in the following examples:

• in general, since xk ∈ S, it can be written as xk =
∑K

j=1 αjvj , so that:

F(xk) =
K∑
i=1

〈
K∑
j=1

αjvj ,vi

〉
vi =

K∑
j=1

αj

K∑
i=1

〈vj ,vi〉vi =
K∑
j=1

αjvj = xk

• if H is an RKHS, S = {k(x1, ·), k(x2, ·), ..., k(xK , ·)} is an orthonormal

set of functions and f ∈ span(S) (that is f(·) =
∑K

j=1 cjk(xj , ·)), we

65

have:

F(f) =
K∑
i=1

〈f, k(xi, ·)〉k(xi, ·) =
K∑
i=1

K∑
j=1

cj〈k(xj , ·), k(xi, ·)〉k(xi, ·)

=
K∑
i=1

K∑
j=1

cjk(xj ,xi)k(xi, ·) =
K∑
i=1

cik(xi, ·) = f

• if H = L2([−π, π]) with the usual inner product 〈f, g〉 =
∫ π
−π fg dx

and the set of orthonormal functions en(x) = einx we have

F(f) =
∞∑

n=−∞
〈f, en〉 en =

∞∑
n=−∞

(∫ π

−π
fe−inx dx

)
einx = f

the usual Fourier series definition.

• ifH is a subspace of Rd of size K, with the usual inner product 〈x,y〉 =

x′y = y′x, we have:

F(vk) =
K∑
i=1

vi〈vk,vi〉 =

(
K∑
i=1

viv′i

)
vk = (VV′)vk (A.2)

where V =
[
v1 v2 · · · vK

]
. If the set {v1,v2, ...,vK} is orthonor-

mal, then VV′ = IK , so that F(vk) = VV′vk = vk.

A.2 Lemma

In MMP algorithm, as we have previously seen, if S = span(X1,X2, ...),

the primal weight matrix V belongs to S by construction. However, by

artificially adding an orthogonal component V⊥ to V we can affect matrix

Perceptron prediction. Specifically, if p 6= 1 and the orthogonal part is of a

certain type, it affects the prediction only through the norm of its single-view

components, as proved in the following lemma.

A.2.1 Lemma. Let instance matrices X̄t be of the form shown in (A.2)

and S = span(X̄1, X̄2, ...). If we artificially add a matrix V̄⊥ /∈ S of the

form shown in (A.4) to the primal weight matrix V ∈ S, matrix Perceptron

prediction is then equal to:

sign

(
K∑
k=1

〈xk,vk〉
(
‖vk‖2 + ‖v̄k⊥‖2

)p−1

)
(A.1)

66

where v̄k⊥ are the single-view components of V̄⊥.

Proof. The proof of the lemma will follow the following path:

1. we will restrict our attention to the case in which instance matrices

are of the form shown in (A.2), which is the form shown in (4.1.1)

projected into an higher dimensional space;

2. we will restrict the space of solutions to the space of matrices com-

posed by a part that lies in the span of the instance matrices, plus an

orthogonal part of a certain specific form

3. we will prove that in this particular case the orthogonal components

of the single-view primal weights change matrix Perceptron prediction

in the way shown in the statement of the Theorem.

We consider instance matrices X̄t ∈ RD×K of the form:

X̄t =

[
X̃D1

0̃D2

]
=
[
x̄1 x̄2 · · · x̄K

]
(A.2)

where:

X̃D1 =


x1 01 · · · 01

02 x2 · · · 02

...
...

. . .
...

0K 0K · · · xK

 =
[
x̃1 x̃2 · · · x̃K

]

is the orthogonal matrix RD1×K constructed as in (4.1.1), xk ∈ Rdk , 0k is

a zero vector in Rdk , 0̃D2 is a zero matrix in RD2×K , D1 =
∑K

k=1 dk and

D = D1 +D2, x̃k ∈ RD1 and x̄k ∈ RD.

If all the instance matrices share the form of shown in (A.2), every matrix

in the span of the instance matrices will have the same form. Therefore if a

matrix V̄‖ is in the span, it can be written as:

V̄‖ =

[
ṼD1

0̃D2

]
=

[
ṽ1 ṽ2 · · · ṽK
0D2 0D2 · · · 0D2

]
=
[
v̄1‖ v̄2‖ · · · v̄K‖

]
(A.3)

67

where

ṼD1 =


v1 01 · · · 01

02 v2 · · · 02

...
...

. . .
...

0K 0K · · · vK


we now define the space of matrices V̄⊥ ∈ RD×K of the following form:

V̄⊥ =

[
0̃D1

˙̃VD2

]
=

[
0D1 0D1 · · · 0D1

˙̃v1
˙̃v2 · · · ˙̃vK

]
=
[
v̄1⊥ v̄2⊥ v̄K⊥

]
(A.4)

where:

˙̃VD2 =


v̇1 0̇1 · · · 0̇1

0̇2 v̇2 · · · 0̇2

...
...

. . .
...

0̇K 0̇K · · · v̇K


is the matrix RD2×K constructed as in (4.1.1), v̇k ∈ Rḋk , 0̃D1 is a zero matrix

in RD1×K , D2 =
∑K

k=1 ḋk and D = D1 +D2.

Finally we define v̄k = v̄k‖ + v̄k⊥ and V̄ =
[
v̄1 v̄2 · · · v̄K

]
, so that:

V̄ =
[
v̄1‖ + v̄1⊥ v̄2‖ + v̄2⊥ · · · v̄K‖ + v̄K⊥

]
=
[
v̄1‖ v̄2‖ · · · v̄K‖

]
+
[
v̄1⊥ v̄2⊥ v̄K⊥

]
= V̄‖ + V̄⊥

From the above definitions it follows that:

〈v̄k‖, x̄j〉 =

〈vk,xk〉 if j = k

0 otherwise.

〈ṽk, ṽj〉 =

‖v̄k‖‖2 = ‖ṽk‖2 = ‖vk‖2 if j = k

0 otherwise.

〈 ˙̃vk, ˙̃vj〉 =

‖v̄k⊥‖2 = ‖ ˙̃vk‖2 if j = k

0 otherwise.

〈
v̄k‖, v̄j‖

〉
=
[
ṽ′k 0′D2

] [ṽj
0D2

]
= 〈ṽk, ṽj〉

68

〈v̄k⊥, v̄j⊥〉 =
[
0′D1

˙̃v
′
k

] [0D1

˙̃vj

]
= 〈 ˙̃vk, ˙̃vj〉

〈
v̄k‖, v̄j⊥

〉
=
[
ṽ′k 0′D2

] [0D1

˙̃vj

]
= 0

Therefore, if j 6= k:

〈v̄k, v̄j〉 =
〈
v̄k‖ + v̄k⊥, v̄j‖ + v̄j⊥

〉
= 〈v̄k‖, v̄j‖〉+ 〈v̄k⊥, v̄j⊥〉+ 〈v̄k⊥, v̄j‖〉+ 〈v̄k‖, v̄j⊥〉 = 0 (A.5)

and 〈
V̄‖, V̄⊥

〉
= Tr

(
V̄′‖V̄⊥

)
=

K∑
k=1

〈
v̄k‖, v̄k⊥

〉
= 0 (A.6)

where the last equation states that V̄‖ and V̄⊥ are orthogonal, with respect

to to the Frobenius inner product.

We can now show how the orthogonal components v̄k⊥ change the pre-

dictions, we start by noting that:

V̄V̄′ =
K∑
i=1

v̄iv̄′i =
K∑
i=1

(
v̄i⊥ + v̄i‖

) (
v̄i⊥ + v̄i‖

)′
=

K∑
i=1

v̄i⊥v̄′i⊥ +
K∑
i=1

v̄i‖v̄
′
i‖ +

K∑
i=1

v̄i⊥v̄′i‖ +
K∑
i=1

v̄i‖v̄
′
i⊥ (A.7)

and we compute V̄V̄′v̄k by the sum of:

K∑
i=1

vi⊥v̄′i⊥v̄k =
K∑
i=1

v̄i⊥v̄′i⊥
(
v̄k⊥ + v̄k‖

)
=

K∑
i=1

v̄i⊥〈v̄i⊥, v̄k⊥〉+
K∑
i=1

v̄i⊥〈v̄i⊥, v̄k‖〉 = v̄k⊥‖v̄k⊥‖2

K∑
i=1

v̄i‖v̄
′
i‖v̄k =

K∑
i=1

v̄i‖v̄
′
i‖
(
v̄k⊥ + v̄k‖

)
=

K∑
i=1

v̄i‖〈v̄i‖, v̄k⊥〉+
K∑
i=1

v̄i‖〈v̄i‖, v̄k‖〉 = v̄k‖‖v̄k‖‖2

69

K∑
i=1

v̄i⊥v̄′i‖v̄k =
K∑
i=1

v̄i⊥v̄′i‖
(
v̄k⊥ + v̄k‖

)
=

K∑
i=1

v̄i⊥〈v̄i‖, v̄k⊥〉+
K∑
i=1

v̄i⊥〈v̄i‖, v̄k‖〉 = v̄k⊥‖v̄k‖‖2

K∑
i=1

v̄i‖v̄
′
i⊥v̄k =

K∑
i=1

v̄i‖v̄
′
i⊥
(
v̄k⊥ + v̄k‖

)
=

K∑
i=1

v̄i‖〈v̄i⊥, v̄k⊥〉+
K∑
i=1

v̄i‖〈v̄i⊥, v̄k‖〉 = v̄k‖‖v̄k⊥‖2

Therefore

V̄V̄′v̄k = v̄k⊥‖v̄k⊥‖2 + v̄k‖‖v̄k‖‖2 + v̄k⊥‖v̄k‖‖2 + v̄k‖‖v̄k⊥‖2

= v̄k‖
(
‖v̄k‖‖2 + ‖v̄k⊥‖2

)
+ v̄k⊥

(
‖v̄k⊥‖2 + ‖v̄k‖‖2

)
=
(
v̄k‖ + v̄k⊥

) (
‖v̄k‖‖2 + ‖v̄k⊥‖2

)
= v̄k

(
‖v̄k‖‖2 + ‖v̄k⊥‖2

)
so that in the general case we have:(

V̄V̄′
)p−1

v̄k = v̄k
(
‖v̄k‖‖2 + ‖v̄k⊥‖2

)p−1 (A.8)

For what we have said, if the instances are of the form of (A.2) matrix

Perceptron prediction is then equal to:

ŷ = sign

(
K∑
k=1

x̄′k(V̄V̄′)p−1v̄k

)

= sign

(
K∑
k=1

〈x̄k, v̄k‖ + v̄k⊥〉
(
‖v̄k‖‖2 + ‖v̄k⊥‖2

)p−1

)

= sign

(
K∑
k=1

〈xk,vk〉
(
‖vk‖2 + ‖v̄k⊥‖2

)p−1

)
(A.9)

70

List of Figures

2.1 An Hyperplane splits the blue class from the red class. 9

2.2 Perceptron algorithm . 10

2.3 Convergence of Perceptron learning updates. 11

2.4 The hinge loss (shown in blue) is convex and upperbounds

the zero-one loss (in black) 15

2.5 Conservative potential-based gradient descent algorithm, for

the hinge loss . 21

2.6 φ maps the non-linearly separable dataset into a new space

where it is linearly separable 22

2.7 Perceptron Dual formulation 25

3.1 Matrix multi-view Perceptron algorithm 31

3.2 Relation between the sets of support vectors St, at consecu-

tive time-steps. 42

4.1 Orthogonal matrix multi-view Perceptron algorithm 50

4.2 Adult a9a. Error Rate with linear kernel. 51

4.3 Adult a9a. Error Rate with Gaussian kernel. 52

4.4 News20. 2-views Error Rate with linear kernel 53

4.5 News20. Error Rate with linear kernel, with respect to the

number of splits (views) and to p. 54

4.6 Eth-80 dataset of pictures . 55

4.7 Eth-80, horses and pears Training Error Rate 57

4.8 Eth-80, horses and pears Testing Error Rate 58

4.9 Eth-80, cows and dogs Training Error Rate 59

4.10 Eth-80, cows and dogs Testing Error Rate 60

71

Bibliography

J. Anemuller, J-H. Bach, B. Caputo, L. Jie, F. Ohl, F. Orabona, R. Vo-

gels, D. Weinshall, and A. Zweig. Biologically motivated audio-visual cue

integration for object categorization. ICCS, 2008.

C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

A. Blum and T. Mitchell. Combining labeled and unlabeled data with Co-

Training. COLT, 1998.

G. Cavallanti, N. Cesa-Bianchi, and C. Gentile. Linear algorithms for online

multitask classification. COLT, 2008.

N. Cesa-Bianchi and G. Lugosi. Prediction, Learning and Games. Cambridge

University Press, 2006.

N. Cesa-Bianchi, A. Conconi, and C. Gentile. On the generalization ability

of on-line learning algorithms. IEEE Transactions on Information Theory,

50(9):2050–2057, 2004.

K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer. Online

passive-aggressive algorithms. Journal of Machine Learning Research, 7:

551–585, 2006.

Charless Fowlkes, Serge Belongie, Fan Chung, and Jitendra Malik. Spec-

tral grouping using the Nyström Method. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 26:214–225, 2004.

C. Gentile. The robustness of the p-norm algorithms. Machine Learning,

53:265–299, 2003.

72

L. Jie, B. Caputo, A. Zweig, J. Bach, and J. Anemuller. Object category

detection using audio-visual cues. ICVS, 2008.

L. Jie, F. Orabona, and B. Caputo. An on-line framework for learning novel

concepts over multiple cues. ACCV, 2009.

Kakade, Shai Shalev-Shwartz, and Ambuj Tewar. On the duality of strong

convexity and strong smoothness: Learning applications and matrix reg-

ularization. 2009.

S. S. Keerthi and D. DeCoste. A modified finite newton method for fast so-

lution of large scale linear SVMs. Journal of Machine Learning Research,

6:341–361, 2005.

J. Kivinen and M. K. Warmuth. Exponentiated gradient versus gradient

descent for linear predictors. Information and Computation, 132:1–63,

1997.

B. Leibe and B. Schiele. Analyzing appearance and contour based methods

for object categorization. Computer Vision and Pattern Recognition, 2003.

A. S. Lewis. The convex analysis of unitarily invariant matrix functions.

Journal of Convex Analysis, 2:173–183, 1995.

O. Linde and T. Lindeberg. Object recognition using composed receptive

field histograms of higher dimensionality. Proc. ICPR, 2004.

F. Orabona, J. Keshet, and B. Caputo. The Projectron: a bounded kernel-

based Perceptron. ICML, 2008.

J. C. Platt. Advances in Kernel Methods - Support Vector Learning. MIT

Press, 1998.

F. Rosenblatt. The Perceptron: A probabilistic model for information stor-

age and organization in the brain. Cornell Aeronautical Laboratory, Psy-

chological Review, v65, No. 6:386–408, 1958.

J. Scholkopf, B.and Smola. Learning with Kernels. MIT Press, 2002.

73

S. Shalev-Shwartz and Y. Singer. A new perspective on an old Perceptron

algorithm. COLT, LNAI 3559:264–278, 2005.

J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis.

Cambridge University Press, 2004.

V. Sindhwani and D. S. Rosemberg. An RKHS for multi-view learning and

manifold co-regularization. ICML, 2008.

L. G. Valiant. A theory of the learnable. Communications of the ACM, 27,

n. 11, 1984.

Z. Wang and S. Chen. Multi-view kernel machine on single-view data. Neu-

rocomputing, 72, 2009.

M. K. Warmuth and S.V.N. Vishwanathan. Leaving the Span. Journal of

the ACM, 20:1–33, 2006.

74

